文部科学省
大学教育・学生支援推進事業【テーマA】
大学教育推進プログラム
成果報告書

自学自習力育成による学習意欲と学力の向上

平成２１年度～平成２３年度

平成２４年３月
九州工業大学
目次

はじめに ... 1

1. 取組の概要 ... 2
 1.1 基礎学力の育成 2
 1.2 自学自習力の育成 3

2. 取組の目的 ... 3

3. 取組の具体的内容・実施体制等 5

4. 取組の実施 ... 8

5. 取組の評価体制と評価 9

6. 成果と課題 ... 16
 6.1 成果 ... 16
 6.2 課題 ... 17

7. 資料 .. 18
 資料 1：習熟度別授業の実施 19
 資料 2：リメディアル教育 21
 資料 3－1～3－5：ヘルプデスクの開設 28
 資料 4－1～4－5：自学自習教材の作成 45
 資料 5－1～5－4：ルーブリックの作成 60
 資料 6：「ものづくり実習」の実施 77
 資料 7：指名補習の実施 83
 資料 8：講話や講習会の実施 88
 資料 9：外部評価委員会の開催 92
 資料 10：推奨入試合格者研修会の実施 94
 資料 11：「初年次学習力育成」だより 97
 資料 12：大学基礎フォーラム（中間報告会） 99
 資料 13：教育フォーラム（最終報告会） 104

おわりに .. 106
はじめに

九州工業大学大学院情報工学研究院長 仁川 純一

少子化の影響で大学全入時代が訪れ、大学に多様な学力の学生が入学するようになった。さらに「ゆとり教育」の影響で、入学する学生の学力が低下するとともに学力差も拡大している。かつて大学入試は、大学の入口における基礎学力をある程度保証する役割を果たしていた。しかし、中央審議会が答申した「学士課程教育の構築に向けて」が指摘するように、大学入試の競争率の低下、それに伴う入学試験の易化や受験科目の減少により、たとえ大学入試に合格したとしても、学力や学習意欲・習慣が身についていない入学生が増加している。このように、大学入学当時の学生の質保証を入学試験に依存することが困難になりつつあり、入学後のリメディアル教育や大学初年次教育の工夫と充実が求められている。

このような状況を深刻に捉え、本取組では、初年次教育における基礎学力の伸長と学習意欲の充実を図る教育を推進してきた。大学入学時における多様な学力レベルの学生に対応するため、習熟度別授業を展開するなど、情報工学の基盤となる数学・物理・英語・情報の初年次教育を充実させる取組を実施した。また、情報工学の専門に繋がる基盤科目的ニューマスマニマムシンシアルズやルーブリックを作成して求められる学力とそのレベルを定め、基礎学力の規準作りを行った。さらに、学生個々の学力を伸長させるためにヘルプデスクを設けて学習アドバイザーを置くなど、可能な限り個々の学生の学力に対応できる学習支援体制を整えて本取組を実施した。

グローバル化が進み変化の激しい社会の中で生きていくには、大学卒業後も新しい知識や技術を常に学び続けるための、持続的な学習意欲・習慣を身につける必要があるが、学生が自ら学び自ら考える学習自習を身につけることはなかなか難しい。そのため、できる限り学生が目的意識を持って、学習意欲を高めて自主的に学習することができるように、学力に応じたスモールステップ方式の学習用教材を数多く開発して、学生の学習自習を支援する環境を整えた。

本取組では、このような方法で専門教育に必要な学生の学力向上と学習意欲を高めることによって、本学の建学の精神である「技術に堪能なる士君子」の養成に努めた。基礎学力や自習自習力の育成は、今日の多くの大学に共通した課題である。この本取組の報告が、これらの問題解決に取り組んでおられる諸氏にとって、少しでも参考になれば幸いである。
1. 取組の概要

本事業の全体の目的は、初年次教育における基礎学力の伸長と学習意欲の充実を図り、本学の建学の精神である「技術に堪能なる士君子」の養成に資することである。

本プログラムでは、学力の育成として初年次教育に着目する。入学時の基礎学力を把握し、リメディアル講義を導入しつつ、学力が高い学生の「浮きこぼれ」が起きないように、初年次基礎科目の習熟度別学習を展開する。また、学習意欲を向上させるために、「できる」事をまず学生に確認させて自信を持たせ、次の段階の学習へと進む「意欲」を引き出すように、スモールステップの自學自習方式を導入する。自学自習を支援するためのヘルプデスクを設置し、主体的な学習および課題解決の習慣を身につけさせる（図1-1）。

図1-1 学力・学習意欲育成プロセス

1.1 基礎学力の育成

①学力把握

本学への入学予定者に対して集合研修会を実施する。また、入学時に数学・物理・英語等の基礎学力テストを行い、入学生の基礎学力を把握する。

②日々の授業

学生の学力に応じて、基礎科目（数学・物理等）は、習熟度別クラスを編成し授業を実施する。
③評価とフォロー
授業担当教員は、テストや出席状況等から学生の学習状況を把握し、必要に応じてリメディアル講義や個別指導を受けさせる。
リメディアル講義と個別指導に関しては、大学教員とベテラン元高校教員が連携して指導にあたる。また、リメディアルと基礎科目の授業を互いに公開・交流するなど学力向上のためのF.D活動を推進する。

1.2 自学自習力の育成
①学習計画
本学への入学者予定者に対して家庭学習を課し、集団研修会で確認する。また、学生は、本学で開発した「大学生の学び方」ワークブックを使って、大学での学習方法を学び、学ぶ意義を考え学習意欲を喚起する。また、全ての学生は、専門教育に必要な基礎学力に関するルーブック（学習到達状況を知るための評価規準表）を基に学習目標を設定し、学習計画を立てる。

②日々の学習
学生は、能力に応じて基礎から発展的な内容までスモールステップで構成された自学自習用ワークブックおよびeラーニング教材（数学・物理・英語の4分野の大学基礎科目用）を用いて学習し、全ての学生が基礎学力を伸長させる。

③評価とフォロー
学生はルーブックを用いて学習の到達度を逐次セルフチェックする。学習内容に関する質問は、教員・大学院生TAが常駐するヘルプデスクを利用する。自学自習の学習状況は、1年次指導教員がモニタリングし、必要に応じて個別指導を行う。

本取組は、初年次教育に着目し、専門教育に入るための基礎学力の充実および学習意欲の向上を図るものである。
リメディアル講義を導入して高等学校までの基礎学力を保証するとともに、大学入学者時に数学・物理・英語・情報の学力を把握し、初年次にいわゆる「落ちこぼれ」「浮きこぼれ」が起きないように習熟度別講義を導入して学生個々の能力を伸長させる。また、学習意欲を向上させるために、「できる」ことをまず学生に確認させて自信を持たせ、次段階の学習へと進む「意欲」を引き出すように、容易な課題から難度の高い課題までカバーするスモールステップ方式の自学自習教材を開発し、学生個々の学力に応じた課題を自学自習させる。同時に、自学自習を支援するためのヘルプデスクを設置し、自学アドバイザを配置して学習内容および学習方法の個別指導を行い、基礎学力および自学自習力を向上させる。

2. 取組の目的
大学入学時の学力低下と学習習慣の欠如の状況を深刻に捉え、本取組では、大学初年次において、多様な学力レベルの学生に対応する方法で基礎科目教育を充実させる。
基礎教育終了時の到達目標を定め，指導力の優れた元高校教員（以下，「元高校教員」と記す）および本学の基礎教育指導教員が協同して教育課程及び教育方法を工夫して専門教育の質を低下させないような基礎教育方法を確立する。また，学部教育で求められる基礎学力とともに，自ら学び自ら考える自学自習力を育成し，学生の学習意欲・習慣を育成する。
　本取組では，この基礎教育科目的学力と自学自習力を併せて「学習力」と規定し，その「学習力」を向上させることによって質の高い初年次教育を実現する。これらの教育は，中央教育審議会（答申）「学士課程教育の構築に向けて」の第2章 第3節「2初年次における教育上の配慮，高大連携」で，「学習の動機付けや習慣形成に向けて，初年次教育の導入・充実を図る」及び「大学や学生の実情に応じて，補完・補完教育の充実を図る」教育に相当し，大学に期待される取組として示されている。
　本取組の目的を，基礎学力と自学自習力の育成に分けて具体的に示す。

①基礎学力の育成
　基礎教育科目（数学，物理，情報，英語）において，入学時の学力診断（プレースメントテストの実施等），少人数クラスでの習熟度別学習，各科目で要求する学習到達度の明示（ルーブックの作成と提示），学習不振者の把握システムの確立とリメディアル講義との連携，高学力者の学力伸長を実施し，初年次修了段階において，学力レベルを維持・伸長しながら落ちこぼれを出さない教育システムを確立する。
　大学初年時の大学基礎教育と並行して，多様な学力レベルの入学生に合わせて，ボトムアップの教育方法として，習熟度別学習及びリメディアル講義を組み入れる。また，トップアップの教育方法として，習熟度別学習及び自学自習による個別学習環境を提供する。多様な学力レベルの入学者が大学の基礎教育へとスムーズに移行し，個々の学力を伸長することができるような初年次教育を実施することを目指す。

②自学自習力の育成
　初年次基礎科目の講義を受講させるとともに，学生が主体的な学習習慣を確立するために，自学自習が可能な科目別ワークブックを開発して家庭学習を求める。多様な学力に対応するために，数学，物理，情報，英語において，スモールステップでの自学自習が可能なワークブックおよびeラーニング教材を開発する。
　物理においては，基礎レベルの学習内容でeラーニング教材が既に半分以上開発済みである。学習項目が全60ステップ，授業の動画が465クリップ，小テストが93セットあり，スモールステップで学習することができる。さらに，自学自習をサポートする体制を整え，授業担当教員，元高校教員および大学院生による常設のヘルプデスクシステムを導入して，学生への個別指導を充実させる。ヘルプデスクでは，学力のある学生がさらに学習意欲を伸長させるような「チャレンジ学習」の提供も行う。ワークブックおよびeラーニングによる自学自習は，基礎的な問題から応用的な問題までスモールステップで学習できるように教材を開発し，より基礎的な学習を必要とする学生から，通常の授業では物足りなさを感じるハイレベルな学生にも対応できるようにする。
③取組による達成目標
初年次教育において、各基礎教育科目（数学、物理、情報、英語）の到達レベルを
d多段階で詳細に示し（ルーブックを作成）、学生の現下の学力レベルと、専門教育
が求める基礎学力レベルとの隔たりがわかるようにする。その隔たりを埋めるための
教育（日々の基礎教育、リメディアル講義、自学自習と個別指導システム等）を実施
して、全学生に学部専門教育が求める最低限の学力レベル（図2-1のレベル3）を達成
させ、さらに全学生が自学自習を行うことによって基礎学力の上乗せを図る。

図2-1 初年次教育の内容と到達レベル

3．取組の方法と実施体制

本取組は、図3-2に示すような内容と方法で実施する。

【1】初年次基礎教育の充実
対象とする初年次基礎教育は、本学部の専門教育で要求される数学（解析、
線形代数、離散数学）、物理（基礎物理）、情報（計算機システム、プログラミ
ング）、英語（基礎英語）の4分野で実施する。各分野とも、5学科を横断する
基礎教育担当グループが、学科共通の教育内容と各学科固有の教育内容を定め、
定期的に連絡会議を開いて教科の共有や授業の進捗状況等の情報を交換しながら
授業を実施する。
①入学時の基礎学力診断評価
数学、物理、情報、英語の各分野で入学時にプレースメントテストを実施す
る。また、高校での既修得状況を把握して、個人別にリメディアル学習の必要
度や、受講する習熟度別受業クラスを決定し授業を開始する。
②習熟度別学習
各分野で少人数編成の習熟度別学習を実施する。受講者の学習過程を逐次評価し、成績不振者やトップアップできていない学生を着用出して個別相談を行い、必要に応じてリメディアル講義の受講やヘルプデスクの利用などの学習指導を行う。

③学習到達度の確認
学期末に各分野で学習到達度の確認を行い、最低限度の学力（図 3-1 のレベル 3）に到達していない学生には個別相談を実施するとともに、夏休みあるいは春休みを利用して補習し、なお到達しない学生は次学期での再修修コースの受講を勧める

図3-2 ボトムアップとトップアップを実現する初年次教育

【2】リメディアル教育の実施
入学者の高校での学習歴や入学時に行うプレスメントテストの結果に基づいて、数学、物理の学力が低い入学者にリメディアル講義の受講を求める。リメディアル講義は、初年次の基礎教育科目の理解を促進する内容で実施する。少人数で受講できるように各科目とも複数のクラスを開設する。各科目とも週1コマ（90分）で実施し、単位の認定は行わない。また、リメディアル講義で用いる教材はワークブックとしてまとめて、可能な限りeラーニング化して、自学自習用教材として用いている。初年次教育として、既に平成18年度から、高大教員連携による物理リメディアル講義を開始している。
入学時に低い成績の学生が、リメディアル講義とスモールステップ型eラーニングを行った結果、図3-3のグラフに示すように、期末考査では成績が上昇しており、学習成果が明確に現れた。

数学と物理に関しては、元高校教員と本学教員が協議してリメディアル講義の目標とカリキュラムを定め教材を作成する。なお、情報と英語に関しては、例えばキャリア教育の観点から、情報処理技術者試験やTOEICなどを資格試験用のeラーニング教材を準備して学ばせる。

数学：代数・幾何、微分・積分等、高校数学で専門教育に接続する内容

物理：力学や電磁気学を中心に高校物理の内容で専門教育に接続する内容

情報：情報の科学的な理解を中心にした内容のeラーニング教材

英語：基本文法理解のためのeラーニング教材（成績に反映）

なお、高大教員連携によるリメディアル教育は、推薦入試合格者に、高校教育に支障をきたさない範囲で土日等を利用して集合型のリメディアル講義（数学、物理、情報、英語）を2005年度から実施している【資料10参照】。

【3】自学自習力の育成

入学者全員に、高校教員と連携して2008年度に「大学生の学び方」ワークブック【資料4参照】を配布し、24項目の内容を確認した後設問に回答させて、自学自習力の重要性を理解させる。さらに、初年次基礎教育の各分野（数学、物理、情報、英語）のワークブックを開発し、可能な限りeラーニング教材化して実用化する。ワークブックは分野ごとに5学科共通の内容で構成し、スモールステップで系統的に自学自習ができるように編集する。学習到達度を示すレベルを示し、学習者の学力に適応した学習ができるようにするとともに、学習到達レベルを理解できるように工夫する。

自学自習で解決できない疑問や問題があれば、ヘルプデスクを訪ねて問題を解決する。分野別にT・Aと担当教員がヘルプデスクの常駐する。なお、学生は、初年次基礎教育の指導教員に対して、自学自習の進捗状況を定期的に報告する。このような自学自習を通じて学生の自学自習力を育成し、専門教育を受けるための「基礎学力」とともに、「自学自習力」を習得することで「学習力」を向上させる。この「学習力」は、学士課程の自立した学生として課題探求を行うための基礎的能カである。

大学内の実施体制としては、図3-4に示すように、学部の教育委員会、分野別基礎教育担当者グループ及び連携教育推進室からの取組担当者が初年次学習力育成ワーキンググループ（初年次学習力育成WGと記す）を組織し、本取組を実施する。初年次学習力育成WGには専任の事務員を配置し、本プログラム
実施に係わる事務を学部事務と連携して行う。

図 3-4 学内の実施体制

4. 取組の実施

1～3章に述べたように、学生個々の基礎学力と学習意欲を向上させることを主な目的として、本プログラム「自学者習力育成による学習意欲と学力の向上」を実施した。具体的には、2009年度の11月から本取組の準備を行い、2010年度と2011年度には、本学情報工学部の新入生に対して、次のような教育を実施した。

(1) 学者に対してプレースメントテストを行い、従来から実施していた英語に加えて、数学においても習熟度別授業を実施した【資料1参照】。
(2) 高校で数学（数学III・Cなど）や、物理IIなどを履修していない学生、及び数学や物理の学習に自信がない学生を対象に、レメディアル講義を入学後1年間の科目として週1コマ（単位なし；90分）を実施した【資料2参照】。
(3) 雇用専任教員および本学教員によるヘルプデスク（学習コンシェルジュ）を常設し、情報工学の基礎となる数学、物理、情報、英語の各科目の学習支援を行った。指導においては、学習指導カルテル活用した。なお、数学は相談件数が多いため、学習コンシェルジュを補助するTAを配置して学生を指導した【資料3参照】。
(4) 多様な学生の学力に対応する数学、物理、情報の自学者教材を作成し、教材は可能な限り、インターネットで自学自習ができるようにeラーニング化する。また、高校と大学との違いなど、意欲的に大学での学習や生活を送るためのワークブックを開発して新入生全員に配布する【資料4参照】。
(5) 専門教育に入るために求められる数学、物理、英語、情報のコミュニティエッセンシャルズを定め、基礎学力育成の指標となる学習評価規準を定めて、可能な限り学習到達の目標とレベルの規準（ループック）を作成した【資料5参照】。
(6) トップアップの企画として、物理と情報の基礎的な学習内容を応用する「ものづくり実習」及びプログラミングコンテストを実施した。新入生を対象に「電子オルゴール
作成会」，また一般に公開するプログラミングコンテストを実施し、在学生の学習アドバイザが準備・企画段階から運営まで主体的に関わって実施する【資料 6 参照】。
⑦ 数学、物理、英語、情報の基礎科目で、中間考査等の成績不振者に対して、学習力を向上させる指導研修を行った。その際、指導カルテを活用した【資料 7 参照】。
⑧ トップアップの企画として、数学、英語の学力や興味を高めるような講話や講習会を実施した【資料 8 参照】。
⑨ 平成22年3月と平成24年2月にかけて5回の外部評価委員会を開催し、委員会での提言を踏まえて取組の改善を行った【資料 9 参照】。
⑩ 学習力育成の進め方の調整を実施している大学を訪問し、実施体制や方法等の知見を得た。さらに、文部科学省主催のGP合同フォーラムに参加し、ポスター、パンフレット等を用いて本学の取組を報告し、広報活動を行った。
⑪ 平成23年度の入学予定者（推薦入試合格者）を対象に研修会を開催した。実施科目は数学、物理、英語で、物理と英語に関しては習熟度別の講義を実施した。家庭学習ができるように教材を提供するとともに、物理は学力レベルに応じた多くのeラーニング教材を開発した。また、2月と3月に入学予定者を集め、2月3日の宿泊形式の研修会（2泊3日）を開催した【資料 10 参照】。
⑫ GPニュースを隔月に発行して学内外に取組を周知するとともに、専用のWebページで学内外にも取組内容を発信した。また、2011年2月には中間報告会を開催して取組の過程を報告するとともに、パネルディスカッションを行って取組の評価を行った。また、2012年3月には最終報告会を実施して、GP修了後の取組について展望した【資料 11 ～資料 13 参照】。

このように取組を通じて、初年度における基礎科目の学力と自学自習力を育成し、更に充実・発展させて、本学の教育目的である「科学技術の進歩に対応できる基礎技術力と、先端的な技術開発を推進できる専門技術力」の育成に繋げる。2012年度以降も大学独自で本取組を継続実施するために、その体制を整えることが今後の課題である。

5. 取組の評価

5.1 評価の体制と方法

本事業は、図 5-1 に示すような評価体制で実施した。取組実施主体である初年度学習力育成WGが、実施状況を定期的に常設の学部教育委員会、連携教育推進室、FD委員会に報告し評価を受ける。同時に、学外評価委員会を設置し実施の評価を受ける。また、支援を受ける学生からも評価を受け、本取組を改善する。
図 5-1 本取組の評価体制

評価の対象は、「4 章 取組の実施」で示した①～③の取組内容である。
また評価方法は次のように実施する。初年次学習力育成WGは、定期的に会議を開催して、実施状況の確認と自己評価及び取組の見直しを行っていく。また、定期的に実施報告書を大学内の教育委員会、F D 委員会、及び外部評価委員会に提出して評価を受ける。外部評価委員会を定期的に開催し、実施報告書を精査して取組の評価を報告する。また、定期的に外部評価委員会による実施内容の視察を受けて評価を受ける。これらの外部評価や関連する学内組織からの評価、さらに学生からのアンケート等を基に、初年次学習力育成WGは、次年度に向けて実施内容および方法等の改善を行う。
取組実施過程で、適宜教育フォーラムを開いて本取組の報告を公表し、取組に対する意見を広く求める。また、最終年度は取組終了時に学習力育成WG、外部評価委員、学部F D 委員が全員で総括会議を行い、3年間の成果報告をまとめた報告書を作成して最終報告フォーラムを開催する。

5.2 外部評価の結果
外部評価委員に対し、プログラムを評価するためにアンケートを実施した。ここでは、4名の外部評価委員から反則されたアンケート結果をまとめて記載する。4 章に示した①～③の本取組内容に対する評価コメント及び5段階評価を以下に示す。

①入学者に対してプレースメントテストを行い、数学と英語の基礎科目で習熟度別授業を実施する
・習熟度が低一中程度のクラスにおいて、テストの平均点の伸びが確認されていることからも、ボトムアップとして良い取り組みができている。しかし、習熟度が高いクラスにおいては、残念ながらテストの平均点が逆に落ちており、トップアップの取り組みには改良の余地があるように思う。
・情報工学の基礎として数学、英語に注目してプレースメントテストを行い、それを基に習熟度別クラス編成を実施した取り組みの結果として、成績向上に顕著な効果が現れており、評価できる。入学者の学力把握の方法として、マークシート形式の
他に多面的な「物差し」の導入などによってよりきめ細かな対応が期待できるであろう。
・ボトムアップには効果が十分に出ると考えられる。今後はトップアップをするための仕組みを追加していくべきである。
・入学段階の学力を把握することは、その後の教育において必要なことであり、効果的な取組である。

②高校で数学Ⅲ・C、物理Ⅱなどを履修していない学生、数学、物理の学習に自信のない学生を対象に高校の数学・物理の内容を学習させる講義を週1コマ（90 分）実施する
・高校での未履修の学生や自信のない学生を対象にした特別な講義を開講することは、良い取り組みであるといえる。特に、上述の学生だけでなくプレースメントテストでの結果が良くない学生に対しても、本講義を履修するよう指導を行っており、ボトムアップの指導を手厚く行っている。その成果も、概ね良好であると言える。しかし、唯一「A学科」の学生には、本講義の効果が確認できず、逆に本講義を受講していない学生よりも悪い結果となっている。この原因を追及し、今後の取り組みに活かして頂きたい。
・入試の多様性によって、様々な履修経歴を有する学生にどのように基礎学力を習得させるのか悩ましい問題であり、そのひとつの対応がメディアル教育だと思われる。理解度の確認のために毎回、小テストや演習・試験問題を課すなどきめ細かな配慮がなされている。
・補習を受けることで、不合格になる学生がいなくなる流れを十分に実現できている。
・高校における学力差が大きい上に、しかも未履修科目がある学生が存在するため、必要不可欠な取組である。

③学習アドバイザ（本学教員および雇用する専任講師）によるヘルプデスクを設け
る。また、学習アドバイザを補助する TA を募集して配置し、教員の下で学生を指導するとともに、ヘルプデスクでの指導方法に関する教育を行う。
・ヘルプデスクの利用状況の伸び率やアンケートの結果、ヘルプデスクを利用した学生の成績の伸び等から判断して、学生の理解の手助けになっていると感じる。特に、情報のヘルプデスクの利用率が、平成 22 年度と比較して平成 23 年度では大幅に伸びており、ヘルプデスクを利用しやすい場所に設置したり、授業後にヘルプデスクの利用を促すようにアプローチをかけたりと、積極的な学習促進活動を行っている。一方で、英語のヘルプデスクの利用率が落ちているので、情報のヘルプデスクの活動を参考に改善することを期待する。
・学生が利用しやすい図書館に「学習コンシェルジュ」を設置して、学生の個々のニーズに応じた個別指導を実施していることや、専任の講師や院生 TA を配置して対応しているなど充実した支援体制は評価できる。また、コンシェルジュ教員と本務教員との定期的な協議の場も設定されており、緊密な連携のもとで実施されている。
・概ね成績向上への流れが作られているが、学生の学習の連続性をどう実現していくか
が今後の課題と思われる。
・個別に学習相談や学習指導をできる態勢を取ることにより、全般的に成績が向上するとともに、学生が抱えている問題点を把握できる等評価できる取組である。

④数学、物理、情報の自学自習教材を作成して学生のボトムアップおよびトップアップに対応する内容を盛り込む。自学自習教材は、可能な限りeラーニング化して、インターネットで自学自習ができるようにする。
・数学、物理、情報の全ての科目においてeラーニング教材を開発したことは評価できる。しかし、その教材内容の質に関する評価が実施されていないこともあり、学習効果においては未知数の部分がある。私が粉飾した限りでは、教科によって質の差があるように感じた。また、現状ではこの自学自習教材の利用率が低いことから、本教材の活用方法の指導も必要であると思われる。今後に期待したい。
・自学自習の教材として、数学、物理、情報についてeラーニングによる自主学習教材が工夫・作成されており、評価できる。今後、作成された教材の活用・利用策も考える必要が生じている。そのためのマニュアル等も含めて検討の余地があるよう。
・特に物理のeラーニングは、具体的実験装置を活用したもので優れている。課題は、利用者が少ない、eラーニングを活用しての勉強の仕方を伝える場が必要と感じる。
・学生一人一人の学力に応じた自学自習教材の開発は、動画も含まれたものになっており、苦手分野の克服に大いに役立つものである。

⑤各科目（数学、物理、英語、情報）で基礎学力のミニマムエッセンシャルズを策定し、基礎学力育成の指標にする学習評価規準を定めて学習到達の目標とレベルの規準（ループリック）を作成する。
・数学と物理に関しては、詳細なループリックを作成している。また、数学と物理のループリックは、複数の教員が議論を重ねて作成しており、ループリックの妥当性においても一定の評価ができる判断する。今後は、このループリックの活用方法を論じて頂きたい。英語と情報に関しては、残念ながらループリックの作成には至っていないので、今後の課題となる。情報では、ループリックの作成が難しいとのことなので、少なくともミニマムエッセンシャルズの策定までは行って頂きたい。
・ループリックは学習到達状況を指導者や学生自身が判断する基準であり、初年次学習力育成にとって大切な要素を成している。まとめにくい科目である「情報」のループリックも作成されており、評価できる。自己の立ち位置が確認できるとともに、教員間の連携・共同作業をも要するため、初年次学習力育成の基礎づくりに効用がある。
・作成までは実現したが、今後の展開を十分に考えていく必要がある。eポートフォリオシステムへの活用が期待される。
・ループリックの作成は、客観的に自己評価できることから、学生の基礎学力育成及び学習意欲醸成のためには必要な取組である。

⑥物理と情報の基礎的な学習内容を応用する「ものづくり実習」を実施する。内容と
それは、「電子オルゴール作成会」を予定しており、学生の学習アドバイザが準備から実施まで、学生指導を行う。

・学生の積極的な学習活動を支援する非常に良い取り組みである。アンケートの結果も良好であり、何より死んで課題に取り組む姿や課題作品が表現されたときの感動などは、学習意欲を引き出すきっかけにもなると考える。
この取り組みは、トップアフップの一環として捉えることができる。そのため、欲を言えば、この取り組みの成果が、取り組み事業「習熟度別授業を実施」における習熟度の高いクラスの学生の成績に反映させるような工夫（例えば、電子オルゴールの作成は、授業のどの知識と関連性があるかを解説するなど）が欲しかったように思う。

・情報教育にとって、ものづくり教育は不可欠な学習内容として基礎・基本を形成していることから、「ものづくり実習」の取り組みは評価できる。この種の教育の充実が、情報教育への関心、学習意欲の高まりを大きく左右するものと考えている。
・「プログラミングコンテスト」は特にトップアフップ効果があったと思う。今後は参加者が増えることが課題。
・学生の意欲を喚起するに相応しい取組である。また、その一環としての「プログラミングコンテスト」は、九工大の特色を大いに発揮した取組である。

⑦数学、物理、英語、情報の基礎科目で、中間考査等で判断した成績不振者に対する学習力を向上させる指名補習を行う。指導においては、平成21年度に開発した学習指導カルテを活用する。
・成績不振を理由に離学する学生を救出できる良い取り組みであるといえる。実際に、成績不振者が好成績を残したり合格できたりしているので、良い効果が表れていると考えられる。物理と情報の報告しか受けていないので、今後は数学や英語の指名補習の状況を整理して頂きたい。
・初年次学習力育成にとって、新入生の学習力の把握のみならず、その後の早期の対応と深い細かな対応は欠かせない。指名補習によって成績は向上しており、地道な取り組みを評価したい。
・半数以上は合格に結びついており、効果は出ている。
・基礎学力充実のためには、成績不振者に対する個別指導は必要な取組である。

⑧数学、英語、情報の学力や興味を増進するような講話や講習会を実施する。
・学力や興味を増進するようなテーマで講話や講習会が実施されているため、良い活動が行われたと判断できる。また、単発で終わらず、複数回に渡って実施されていてももあり、積極的な活動が行われたと評価できる。
・講話や講習会は学生のみならず、教員をも含めた幅広い参加を呼びかけている。話題内容やタイトルは興味・関心をそそるものが多く、参加者も多い。参加者のアンケートを見た気持がわいてくる。広報の工夫をすればさらに多くの参加者が期待できる。
・トップアフップおよびキャリア教育としての効果はあると考える。参加者間の交流が
あるとより良いと感じる。
・述べた1日にわたる講話や講習会の実施は、学習に対する興味関心や意欲を高めるためによく努力している表れである。

⑨外部評価委員を開催し、本取組を評価し、改善に向けての方策を検討する。
・定期的に外部評価委員会を開催され、これまでの取り組みの内容や結果などについて、丁寧に報告して頂いた。また、外部評価委員からの意見を真摯に受け止めて頂き、各取り組み事業に反映して頂いた。
・5回にわたる委員会が開かれたこと、毎回丁寧な実施状況が報告されたこと、委員による質問に懇切丁寧に説明されたこと、さらに、数多くの建設的な意見が開陳されたことなど、いずれも有意義な委員会の開催であったと評価できる。
・毎回、丁寧な説明、共有をして頂いた。
・外部評価委員には、様々な分野の方がなっており、外部評価委員会における議事も充実したものであった。

⑩学習力育成を先進的に実施している大学を訪問し、視察して実施体制や方法等の情報を得る。
・多くの大学を視察されており、かつ、報告書の内容からも判断できるように、視察された大学の実施体制や方法などに関して多くの情報を収集できている。今後は、九州工業大学の取り組みとして、収集した多くの情報をどのように活かしていくかについて注目したい。
・10ヵ所にわる先進事例の取り組みを調査視察して、実施体制をはじめ、内容、方法など、多くの観点から有意義な情報を得ている。今後は、本取り組みに大いに活かしていただくことが期待される。
・先進的事例を十分に調査している。
・他大学の取組を視察することは、本事業実施の上で、効果的なものである。

⑪入学予定者（推薦入試合格者）を対象に研修会を実施する。実施科目は、数学、物理、英語でいずれも修学度別の講義を対面で実施する。情報のリメイクはeラーニングで実施する。2月と3月は、宿泊形式の研修会（2泊3日）を実施する。
・大学入学前に宿泊型の研修会を行なうことは、これから大学生になるという心構えや準備、大学はどういうところかという理解の促進、学習意欲の向上、教員や事務職員に対する心理的な壁を低くするなど、多くの効果が期待できる良い取り組みであると考える。特に、「同学年の友達ができた」「これから同じ大学で学ぶ仲間との顕合わせができた」という感想を持つことが多いことから、学生を少なくする効果も期待できる。
・推薦入試による合格者に対して、3回にわたって宿泊を兼ねた研修会の開催は意義深いものとして評価できる。コミュニケーションやリーダーシップの涵養などの観点からも初年次学習力育成を側面から支える取り組みである。
・事前の個人ネットワークを作るのに優れている。リーダー養成に役立っている。
推奨入試合格者を対象として、2泊3日の宿泊研修2回を含め計3回の研修会実施は、基礎学力の充実、大学における学習意欲の高揚及び大学生活への不安解消等高い効果が期待できるものであり、評価できる。

⑨本取組の3年間の活動報告書を作成し、それを基に外部評価委員や本プロジェクトの教員が総括を行う。また、広く案内を行って本取組の最終報告会を実施する。取組の最終報告書は、関係各組織に送付されるとともに、ウェブページで情報も提供する。

2012年3月7日（水）に、本取り組みの最終報告会が開催されており、その広報活動もしっかりと行われている。報告会の内容も充実している。

また、本取り組みの活動を報告する「初年次学習力育成」だよりも定期的に発行しており、活動報告は十分に行われていると判断する。

「大学教育におけるパラダイムシフトと新機軸」という教育フォーラムが計画されており、そこで「初年次教育と教育方法の改善」と題して報告が行われる。大学に対してメッセージを発信することで、新たな課題を見つけることに期待したい。

全国フォーラムまでの流れもでき、今後の広がりが十分に期待できる。

本取組は、平成21年度から実施してきた本事業の総括であるため、必要不可欠なものであり、報告会の内容も充実している。

図5.2 外部評価委員評価アンケート集計結果（5段階評価）
6. 成果と課題

本研究では、大学初年次での基礎学力および自学自習力の育成を行った。4章に示した「取組の実施」(1)〜(5)の12項目に対応させて、2009年11月〜2012年3月までの事業推進期間の成果と課題をまとめると次のようになる。

1. 学時の学力を把握して、習熟度別クラス編成や基礎学力育成の资料として活用することができた。現在は、入学時の数学のプレースメントテストの実施・活用に留まっている。今後は、初年次終了時点での基礎学力を測るプレースメントテストを実施するなど、継続して学力測定を行い学習指導に活用したい。

2. リメディアル教育を実施することによって、大学の学習に入るために必要な基礎学力を育成することができた。数学と物理の高校の内容でリメディアルを行っているが、学習の要望もあり、大学初年次の基礎科目の授業内容と連携したリメディアルの授業カリキュラムの実施が求められている。

3. 学習コンシェルジュによる学習支援を通じて支援を受けた学生の理解力が増し、基礎科目の内容を理解するとともに、学習方法や習慣を身に付ける下地ができた。学習コンシェルジュから学習方法のアドバイスを受け、自学自習力を身につけられるような指導方法を開発する必要がある。

4. 多様な学力の学生が自習できるように、eラーニング教材は容易な内容から難易な内容まで幅広えており、学習に応じた学習環境をある程度提供することができた。しかし、開発した教材を利用する学生は少ない。今後は、基礎科目を指導する教員に紹介して、利用率の向上を図りたい。

5. 数学と物理の基礎科目に関してはルーブリックが完成し、学習の観点と評価規準を共有することができるようになった。さらに、初等物理においては、ルーブリックをeラーニングシステムに組み込み、学習の目標やレベルが明確になった。今後は、eポートフォリオに組み込み、学生がループリックを用いて自分の学力を確認し、次の学習目標を設定できるようにしたい。

6. 電子オールコールやプログラミングコンテストの開催を通じて、基礎学力の定着を図り、学習に対する興味や関心を深め、学習意欲の向上に繋げることができた。このような学生主体で行う企画を継続し、企画する学生や応募する学生のトップアップにつながるようにしたい。

7. 成績の不振が深刻化する前に、個別指導を開始することによって、学習のつまずきを解消し、自信回復を促すことで基礎学力を付けさせることができた。担当教員との連絡を密にして、個別指導を受ける学生の成績不振の原因を探り、適切な集団指導が行えるような教育システムを作れる必要がある。

8. 講話や講習会を定期的に開催することによって、小人数ではあるが、学習に対する興味や関心を深め、学習意欲の向上に繋げることができた。学生に企画させるなどして、学生の知的興味を喚起するような内容の講演や講習会をこれからも継続したい。

9. 外部評価委員から取組みの評価を受けることによって、取組の質向上のためのアド
パイパスを得ることができた。たとえば、学生が質問しやすい場所での学習コンシェルジュの開設や、トップアップを目的にしたプログラミングコンテストの開催など、当初計画には盛り込まれなかった取組内容を実施することができた。
⑨先進的な取組事例を実際に行うことによって、実施に必要な環境、体制、実施方法を知ることができた。また、GPフォーラムに参加して相互に情報を交換しノウハウの提供を受けることによって、本取組の改善に反映させることができた。たとえば、活発な学習支援活動を行っている大学の実施方法及び実施体制等を知ることによって、本取組の学習コンシェルジュの活動の改善に有効な情報を得ることができた。
⑩大学入学までに習得しておくべき内容の復習や、高等学校で未習得の学習内容を学ぶことができた。宿泊研修会では、基礎学習力をつけるとともに、仲間意識や大学入学への意識を高めることができた。また、大学のスタディスキル等についての研修内容を基にワークブックを作成し、新入生全員に配布した。一般入試で合格した学生に対しては、ワークブックを配布するだけであるため実際利用していない可能性もある。初年次の授業の中で、時間を確保して仙人に対して大学のスタディスキルを学習する時間をカリキュラムの中に設ける必要がある。
⑪プロジェクトチームの会議、中間及び最終報告会、外部評価委員の評価などから、本取組を改善するための情報を得ることができた。たとえば、学生による初年次学生への学習指導や、高大の教員連携による学習支援の方法など、有益な情報を得ることができた。中間及び最終報告会では、学内外に本取組の情報を広く発信し、情報を提供することができた。今後も継続して学習教育に関わる情報発信を行い、他大学と問題点を共有して協働して基礎学力や自学自習力の育成方法、初年次プログラム等の開発を行っていきたい。
7. 資料
資料1

・入学者に対してプレースメントテストを行い、数学で習熟度別授業を実施
本学部は多様な人材を実施しており、入学生の学力を測定することはその後の数学基礎教育を行う上で必須である。このため、「解析Ⅰ」の初回講義時にプレースメントテストを実施し、その結果をもとに習熟度別クラス編成を行った。テスト問題のレベルは高校教科書の例題程度であり、マークシート形式とした。またこのテスト結果は半年後の数学科目、情報基礎科目の成績と比較検討するための基礎資料として重要である。

（参考）平成23年4月実施
内容：高校範囲の数学（数学Ⅰ・Ⅱ・Ⅲ・A・B・C）
受験者：2011年度情報工学部知能、電子、システム、機械の1年生総勢349名

プレースメントテストの効果
・入学時点で学力の正確な把握
・習熟度別クラス編成の基礎データ取得
・入試区分による学力差の把握
・学科ごとの学力差の把握

2年間の蓄積データのみでその効果を判断できないが、今後継続してデータ蓄積をしていくことが望ましい。初年次数学基礎教育を行う上で有用なデータとなるであろう。本年度より学期末試験を共通化したので、上記プレースメントテスト結果との比較により入学時と前学期末の学力の比較も可能になった。
特に下記の点において、定量的に測ることができるようになった。
・習熟度別授業の効果
・リメディアル教育の効果
・数学コンシェルジュでの指導の効果

習熟度別授業の効果
初級クラスの期末試験の成績は普通クラスに匹敵するまで伸びている。特に、推薦入試合格者については、学力不足が予想されたが、概ね合格ラインに到達した。これはリメディアル教育の効果も含まれている。
次の表は、Aクラスと、Aクラスよりややプレースメントテストの点数が高いBクラスの成績の伸びを表している。Aクラスの平均点は、プレースメントテスト（Pテスト）では、平均点より26.9点低かったが、期末考査では7.8点に差が縮小している。Bクラスの平均点は、プレースメントテスト（Pテスト）では、平均点より12点低かったが、期末考査ではほぼ全体の平均点に近づいていることがわかる。したがって、習熟度
クラスで授業を実施することによって、本学の数学「解析Ⅰ」の場合、初級クラスの学力は向上したことがわかる。

<table>
<thead>
<tr>
<th></th>
<th>Pテスト（平均点）</th>
<th>期末考査（平均点）</th>
<th>平均点との差</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aクラス</td>
<td>42.1（69.0）-26.9</td>
<td>59.2（67.0）-7.8</td>
<td>+19.1</td>
</tr>
<tr>
<td>Bクラス</td>
<td>57.0（69.0）-12.0</td>
<td>66.4（67.0）-0.6</td>
<td>+11.4</td>
</tr>
</tbody>
</table>
資料2

●高校の数学講義科目「解析リメディアル」（前学期）

2009年度 指導報告
1. 使用テキスト
「やさしく学べる 微分積分」 石村 隆子 著 共立出版

2. 授業計画
(1) 1変数関数 直線 放物線 円と楕円 双曲線 三角関数
(2) 逆三角関数 指数関数
(3) 対数関数
(4) 微分 微分公式
(5) 整式 有理式の微分 三角関数の微分 逆三角関数の微分
指数関数 対数関数の微分
(6) 対数微分 n次導関数
(7) 平均値の定理と不定形の極限 ロピタルの定理 マクローリン展開
(8) 二項展開 関数の増減とグラフの凹凸
(9) 不定積分 置換積分
(10) 部分積分 有理関数の積分
(11) 面積と回転体の体積
(12) 演習1
(13) 演習2

3. 授業の進め方
科目の位置づけからして、高校の数学Ⅲの習熟に力を注ぎ、なおかつ基礎解析につながるように演習をたくさん取り入れ、学生さんにとって目に見える力をつけていきます。そのために、小テストを10回実施する。

4. 授業の自己評価
2009年度初めで、大学において数学IIIの履修者が苦手な学生を対象に「解析リメディアル」を開講。水曜日の5限目であり、0単位ということでもあり受講者数がどうだろうと心配した。4月の第1講目は様子見を兼ねてか約70名の出席があった。
5月8日時点で18名。このメンバーは比較的まじめに取り組み、前期試験に15名受験した。大学の行事と降雨災害による休講のため13回の授業になり、演習が不足した。
2010年度　指導報告

1．使用テキスト
「リメディアル　大学の基礎数学」　小寺 平治 著　裳華房

2．授業計画
（1）多項式の計算
（2）分数式・無理式
（3）方程式・不等式
（4）やさしい関数
（5）指数関数　対数関数
（6）三角関数
（7）数列・級数
（8）関数の極限値
（9）微分積分第一歩
（10）総合演習1
（11）総合演習2
（12）総合演習3

3．授業の進め方
2009年度と同じ。演習時間を増やす。小テスト5回
別に小テスト形式で時間内に解いてもらい、簡単な解説を加える。

4．授業の自己評価
年度初めの履修登録は47名。5月19日の小テスト受験者は23名。前期試験受験者は14名。講義・演習は20名程度熱心に参加していた。0単位ということもあるも、他の科目の勉強のため「解析リメディアル」の前期試験を受けない学生が数名はいた。
2011年度 指導報告

1. 使用テキスト

「やさしく学べる 微分積分」 石村 園子 著 共立出版

2. 授業計画

(1) 1変数関数 直線 放物線 円と楕円 双曲线 三角関数
(2) 逆三角関数 指数関数
(3) 対数関数 微分
(4) 微分公式 整式有理式の微分 第1回 小テスト
(5) 逆三角関数の微分 指数関数 対数関数の微分 第2回 小テスト
(6) 平均値の定理 ロピタルの定理 マクローリン展開 第3回 小テスト
(7) 関数の増減とグラフの凹凸 不定積分 第4回 小テスト
(8) 置換積分 有理関数の積分 第5回 小テスト
(9) 定積分 面積と回転体の体積 第6回 小テスト
(10) 演習1 第7回 小テスト
(11) 演習2
(12) 演習3
(13) 演習4
(14) 演習5

3. 授業の進め方

科目の位置づけからして、高校の数学Ⅲの習熟に力点を置き、おあつこ基礎解析につながるように演習をたくさん取り入れ、学生さんにとって目に見える力をつけたい。そのために、小テストを7回実施する。

4. 授業の自己評価

今年度は大学の取組に大きな変革があり、大学において数学Ⅲの未履修者や苦手な学生に「解析リメディアル」の受講を義務付けたことが結果的に成果をあげたのではないかと思われる。授業計画（1.0）から（1.4）では、演習をしっかり実施できたことはよかったのではないか。「基礎解析」の成績に反映しているならば学生の努力に賛辞を送りたい。
解析リメディアルと解析I期末テストとの関連について
(2011年度「解析Iリメディアル」受講者を対象にして)

解析Iリメディアルを受講、未受講によって、解析Iの成績にどの程度影響があるのかを調べる。
以下の図1は解析リメディアルを受講した学生と未受講の学生のプレースメントテストと解析I期末テストの平均点の推移を示している。図1から2011年4月に行われたプレースメントテストでは未受講の学生の平均点が72.3点、受講した学生の平均点が47.4点と差が約25点であったのに対し、2011年7月に行われた解析Iの期末テストでは未受講の学生の平均点が67.7点、受講した学生の平均点が62.0点と平均点の差が4月のプレースメントテストに比べ大幅に縮まっていることがわかる。

図1: 2011年度における解析リメディアルを受講した学生と未受講の学生の成績推移

以下の表1はリメディアルを受講した学生の各テストの平均点を表している。プレースメントテストの平均点に比べ、解析リメディアルのテストと解析I期末テストの平均点はともに上昇しているのがわかる。入学時のプレースメントテストの結果からは、多くの学生が解析Iの単位取得が難しいと予想されたが、結果的に不合格率は14.6%であった。また、解析I期末テストと解析リメディアルテストの相関係数は0.727であり高い。このことから、解析リメディアルの補習を受けることによって「解析I」の学習を理解し、合格者の割合が増えたのではないかと考えられる。
表1：2011年度解析Iリメディアル受講生の各テストの平均点

<table>
<thead>
<tr>
<th></th>
<th>プレースメントテスト</th>
<th>解析リメディアル</th>
<th>解析I期末テスト</th>
</tr>
</thead>
<tbody>
<tr>
<td>解析リメディアル</td>
<td>平均点</td>
<td>平均点</td>
<td>平均点</td>
</tr>
<tr>
<td>受講生</td>
<td>47.4</td>
<td>66.8</td>
<td>62</td>
</tr>
</tbody>
</table>

＊なお、解析I期末テストと解析リメディアルテストの相関係数は0.727である。

●高校の物理講義科目「初等物理補習」（前学期）

2011年 前学期
科目名：初等物理補習
クラス：01
担当教員：小田部 エドモンド 荘司 otabe@cse.kyutech.ac.jp
対象学科：創成情報工学科 生命情報工学科 電子情報工学科 機械情報工学科 知能情報工学科
科目区分：対象分野 查定外 0.0単位
時間割：前学期 月曜日 1限目
講義室：2201 講義室

授業の概要
工学を学ぶものにとって物理学は基礎であり、自然界の現象を数式を使って記述することにより理解を起こし除いて理解することができるようになる。この講義では高校物理を未学習であった学生を対象の中心として、大学で学ぶ物理への踏み出しをすることを大きな目的である。高校物理に不安がある学生ももちろん、理解している学生も受講すると大学物理を学ぶ上で有利である。

カリキュラムにおけるこの授業の位置付け
初等物理補習はすべての大学で学ぶ物理系の科目の基礎となる。基礎物理学、力学などと併行して受講することでより理解が高まる。

授業項目（授業計画）
（1）ループリックの説明、SI単位系、直線運動、加速度
（2）等加速度運動、放物運動
（3）力、摩擦力、運動量、運動量保存、重心の運動
（4）反発係数、仕事、エネルギー、仕事率、運動エネルギー、位置エネルギー、バネに蓄えられるエネルギー、力学エネルギーの保存、保存力
（5）剛体のつりあい、つりあいの条件、偶力、重心
（6）等速円運動、慣性力、遠心力
（7）単振動、単振り子
（8）万有引力、重力、万有引力による位置エネルギー
（9）圧力、理想気体、分子運動による圧力
（10）波動現象、縦波と横波、波の強さ、波の反射
（11）波の性質、干渉、回折、屈折、全反射、うなり
（12）電場、電気力線、電位、点電荷による電位、コンデンサー
（13）コイル、インピーダンス、交流回路
（14）慣性モーメント、並進運動と回転運動

授業の進め方
講師は上野昭治客員教授である。講義資料を印刷して配布する。毎回確認のための演習問題あるいは試験を行う。

授業の達成目標（学習・教育目標との関連）
この科目は各学科の物理系科目の学習・教育目標を達成するために開講されている。

成績評価の基準および評価方法
この科目は最終試験がない。また単位も0であり出されない。これは内容が高校物理から大学物理のごく初歩のところまでであり、完全な大学物理ではないからである。毎回の演習問題および試験問題は採点されて返却されるので、各自でどのくらい理解できたかを確認することができる。

キーワード
高校物理、力学、波動、電磁気学

教科書
教科書はない。講義資料を印刷して配布する。

参考書

備考
2011年度 初等物理補習の成果について分析

力学、基礎物理学Ⅰ、基礎物理学A・同演習、物理学入門・演習の科目について、解析を行い、平均点と不合格になる可能性についてまとめた。
また得点分布を補習ありと無しに分けて頻度をプロットしたものを付けた。

考察:
1. 表1の平均点を「補習あり」(初等物理補習を受講した学生) と、「補習なし」(初等物理補習を受講していない学生)を比較すると、C学科以外は補講を受けた学生の方が成績がよい。
2. 表2から、全ての学科で補講を受けた学生の方が不合格になりにくい。

表1:2011年度の平均点の比較(100点満点) 表2:学科別の不合格になる可能性(%)
資料3-1

● 学習アドバイザ（コンシェルジェ）によるヘルプデスクを開設

学習相談に応じるヘルプデスクを「学習コンシェルジェ」と呼び、数学・物理・英語・情報の相談を行った。学生が利用しやすい図書館に設置し、専任講師、大学院生の TA が時間を決めて待機し学生からの学習相談を受けた。下記は、学生への案内掲示用のポスターと、H22年度およびH23年度のコンシェルジェ相談件数の月別推移である。H22年度は合計571件、H23年度は1月までで745件（2年間で1316件）であり、増加していることがわかる。

○ 学生掲示用チラシ
平成22年度 コンシェルジュ件数

<table>
<thead>
<tr>
<th>月</th>
<th>英語</th>
<th>情報</th>
<th>物理</th>
<th>数学</th>
</tr>
</thead>
<tbody>
<tr>
<td>4月</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>5月</td>
<td>45</td>
<td>3</td>
<td>14</td>
<td>34</td>
</tr>
<tr>
<td>6月</td>
<td>64</td>
<td>5</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>7月</td>
<td>59</td>
<td>1</td>
<td>8</td>
<td>54</td>
</tr>
<tr>
<td>8月</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>9月</td>
<td>22</td>
<td>0</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>10月</td>
<td>31</td>
<td>0</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>11月</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>12月</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>1月</td>
<td>5</td>
<td>0</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>2月</td>
<td>14</td>
<td>0</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>3月</td>
<td>14</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

合計件数 数学：168件 物理：72件 情報：17件 英語：314件 合計：571件

平成23年度 コンシェルジュ件数

<table>
<thead>
<tr>
<th>月</th>
<th>英語</th>
<th>情報</th>
<th>物理</th>
<th>数学</th>
</tr>
</thead>
<tbody>
<tr>
<td>4月</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>5月</td>
<td>13</td>
<td>37</td>
<td>22</td>
<td>44</td>
</tr>
<tr>
<td>6月</td>
<td>18</td>
<td>45</td>
<td>7</td>
<td>55</td>
</tr>
<tr>
<td>7月</td>
<td>24</td>
<td>35</td>
<td>18</td>
<td>52</td>
</tr>
<tr>
<td>8月</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>52</td>
</tr>
<tr>
<td>9月</td>
<td>9</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10月</td>
<td>33</td>
<td>23</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>11月</td>
<td>19</td>
<td>21</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>12月</td>
<td>24</td>
<td>7</td>
<td>10</td>
<td>38</td>
</tr>
<tr>
<td>1月</td>
<td>14</td>
<td>28</td>
<td>9</td>
<td>19</td>
</tr>
</tbody>
</table>

合計件数 数学：268件 物理：102件 情報：211件 英語：164件 合計：745件
※平成23年度については、平成23年4月～平成24年1月の集計結果
※英語に関しては、4月は開設しておらず、夏休みも希望者のみ行った。
○学習コンシェルジュ（学習アドバイザ）アンケート結果（平成23年7月実施）

○学年別利用者

- 1年：61%
- 2年：27%
- 3年：8%
- 4年：0%
- 院生：4%

○利用回数

- 初めて：15%
- 今学期初めて：4%
- 今学期2回以上：77%

○理解度

- 少し理解できた：23%
- 理解できなかった：0%
- 理解できた：73%
- 未回答：4%

○利用してどうでしたか

- 未回答：4%
- わからない：0%
- よくなかった：0%
- よかった：96%

○今後の利用について

- 未回答：4%
- わからない：0%
- 利用しない：0%
- また利用したい：96%

○相談した感想及び要望

- わかりやすく、理解できた。
- 苦手科目も好きになり、これからも教えてもらいたい。
- 講義ではわからないことも理解できた。
- 火曜と金曜の6限目も開設してほしい。
- 19:00-20:00の時間も開設してほしい。
- わかりやすい解説で自分で解かせようとして下さるので役に立った。
- 教科書を読んでも全然わからないかったが、丁寧に教えて頂いてテスト勉強もはかどった。
- 英語コンシェルジュの時間を増やしてほしい。
資料 3－2

●数学コンシェルジュ活動報告

1. 数学コンシェルジュの概要
 ・数学コンシェルジュの期間 2010年4月～2012年3月
 ・場所 九州工業大学情報工学部図書館
 ・分野 数学に関する疑問、相談
 ・対象学生 大学1年生を中心とした大学生
 ・指導方法 基本的には1対1方式で学生の問題を解消すべく指導

1.1 数学コンシェルジュの学習指導
 ・数学に関する学生の学習相談、及び指導
 ・学生の進学相談及び進級相談
 ・数学の成績優秀者によるディスカッションの場として使用
 例えば、学生が自ら疑問に思った高度な内容については解答をそのまま与えるのではなく調査や検討を自分で行うようにも指導し、調査結果を討論する等。
 ・ＴＡ（ティーチングアシスタント）による補助
 一度に多くの学生が来た場合、1人のコンシェルジュでは対応できない場合がある。
 そこでTAには、複数の学生に対応するためのアシストを依頼している。

2. 数学コンシェルジュの実施状況
2.1 数学コンシェルジュ相談件数
 ・2010年4月～2011年3月 168件
 ・2011年4月～2011年1月 268件
 ・相談件数合計 436件
表 2.1：月別のコンシェルジュ開催日と相談件数

<table>
<thead>
<tr>
<th>月</th>
<th>開催日数</th>
<th>相談件数</th>
<th>月</th>
<th>開催日数</th>
<th>相談件数</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010年4月</td>
<td>12日</td>
<td>7件</td>
<td>2011年4月</td>
<td>16日</td>
<td>19件</td>
</tr>
<tr>
<td>2010年5月</td>
<td>15日</td>
<td>34件</td>
<td>2011年5月</td>
<td>15日</td>
<td>44件</td>
</tr>
<tr>
<td>2010年6月</td>
<td>17日</td>
<td>14件</td>
<td>2011年6月</td>
<td>16日</td>
<td>55件</td>
</tr>
<tr>
<td>2010年7月</td>
<td>13日</td>
<td>54件</td>
<td>2011年7月</td>
<td>14日</td>
<td>52件</td>
</tr>
<tr>
<td>2010年8月</td>
<td>14日</td>
<td>14件</td>
<td>2011年8月</td>
<td>7日</td>
<td>3件</td>
</tr>
<tr>
<td>2010年9月</td>
<td>15日</td>
<td>3件</td>
<td>2011年9月</td>
<td>14日</td>
<td>3件</td>
</tr>
<tr>
<td>2010年10月</td>
<td>16日</td>
<td>12件</td>
<td>2011年10月</td>
<td>16日</td>
<td>19件</td>
</tr>
<tr>
<td>2010年11月</td>
<td>11日</td>
<td>5件</td>
<td>2011年11月</td>
<td>11日</td>
<td>16件</td>
</tr>
<tr>
<td>2010年12月</td>
<td>12日</td>
<td>7件</td>
<td>2011年12月</td>
<td>13日</td>
<td>38件</td>
</tr>
<tr>
<td>2011年1月</td>
<td>12日</td>
<td>2件</td>
<td>2012年1月</td>
<td>12日</td>
<td>19件</td>
</tr>
<tr>
<td>2011年2月</td>
<td>13日</td>
<td>15件</td>
<td>合計</td>
<td>134日</td>
<td>268件</td>
</tr>
<tr>
<td>2011年3月</td>
<td>15日</td>
<td>1件</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>165日</td>
<td>168件</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2 相談内容内訳
2.2.1. 2010年度相談内容内訳
- 2010年度相談件数 合計 168件

表 2.2：2010年度学年別相談件数

<table>
<thead>
<tr>
<th>学年</th>
<th>1年</th>
<th>2年</th>
<th>3年</th>
<th>4年</th>
<th>院2年</th>
</tr>
</thead>
<tbody>
<tr>
<td>相談件数</td>
<td>131件</td>
<td>13件</td>
<td>9件</td>
<td>6件</td>
<td>9件</td>
</tr>
</tbody>
</table>

表 2.3：2010年度学科別相談件数

<table>
<thead>
<tr>
<th>学科</th>
<th>知能</th>
<th>電子</th>
<th>システム</th>
<th>機械</th>
<th>生命</th>
</tr>
</thead>
<tbody>
<tr>
<td>相談件数</td>
<td>20件</td>
<td>90件</td>
<td>12件</td>
<td>23件</td>
<td>23件</td>
</tr>
</tbody>
</table>

- 質問の科目別相談件数
 解析 169件、離散数学 38件、線形代数 7件、英語 1件、線形代数Ⅱ 13件、
 解析Ⅱ 4件、修学相談 6件、確率統計 4件、微分 3件、院試験対策 5件、
 論理数学 2件、代数学 9件、オートマトン 1件、応用数学 1件、情報工学 4件

-32-
2.2.2. 2011年度相談内容内訳
・2011年4月～1月相談件数 268件

<table>
<thead>
<tr>
<th></th>
<th>1年</th>
<th>2年</th>
<th>3年</th>
<th>4年</th>
<th>その他</th>
</tr>
</thead>
<tbody>
<tr>
<td>相談件数</td>
<td>222件</td>
<td>4件</td>
<td>22件</td>
<td>7件</td>
<td>13件</td>
</tr>
</tbody>
</table>

表 2.4: 2011年度学科別相談件数

<table>
<thead>
<tr>
<th></th>
<th>知能</th>
<th>電子</th>
<th>システム</th>
<th>機械</th>
<th>生命</th>
</tr>
</thead>
<tbody>
<tr>
<td>相談件数</td>
<td>46件</td>
<td>16件</td>
<td>138件</td>
<td>31件</td>
<td>18件</td>
</tr>
</tbody>
</table>

・質問の科目別相談件数
解析Ⅰ102件、解析Ⅱ15件、線形代数38件、線形代数Ⅱ48件、離散数学20件、その他（論理数学、微分方程式6件、確率5件、物理、オートマトン、代数学、修学相談、進学相談等）

3. 数学コンシェルジュ活動の成果
3.1 数学コンシェルジュによる学習相談の効果検証
・相談に来た学生たちの学力が向上しているか否かについて検証する。
2011年4月上旬に行われたプレースメントテストの成績と2011年7月下旬に行われた解析Ⅰ期末テストの成績を比較することで学習相談に来た学生的成績の変化を検証する（図3.1）。検証には学生の学力の傾向を調査するために分析したプレースメントテスト、解析Ⅰ期末テストのデータを用いる。
図 3.1: 比較するプレースメントテストと解析 I 期末テストについて
（対象となる学生、分野がともにほぼ同じであり、成績のデータも揃っているので比較
がしやすい）

相談に来た学生たちの成績の变化を表 3.1（点数と順位表記）、表 3.2（偏差値表記）に
示す。また、各学生の成績変化を表した図 3.2（解析 I 相談件数 10 件以上）、図 3.3（解
析 I 相談件数 4〜9 件）、図 3.4（解析 I 相談件数 2〜3 件）を示す。
表 3.1：コンシェルジュ相談の効果の検証（点数と順位）
（相談の期間 2011 年 4 月～2011 年 7 月）

<table>
<thead>
<tr>
<th>コンシェルジュ相談回数</th>
<th>解析Ⅰ相談回数</th>
<th>プレースメントテスト（2011年4月上旬）</th>
<th>解析Ⅰ期末テスト（2011年7月下旬）</th>
<th>順位代表期末テスト</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>20</td>
<td>50(239位)</td>
<td>88(135位)</td>
<td>89(3位)</td>
</tr>
<tr>
<td>18</td>
<td>13</td>
<td>57(280位)</td>
<td>84(159位)</td>
<td>85(2位)</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>46(321位)</td>
<td>52(272位)</td>
<td>64(2位)</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>48(317位)</td>
<td>87(142位)</td>
<td>97(2位)</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>91(1位)</td>
<td>90(1位)</td>
<td>90(1位)</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>71(162位)</td>
<td>80(3位)</td>
<td>81(2位)</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>30(346位)</td>
<td>60(192位)</td>
<td>62(2位)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>59(263位)</td>
<td>63(163位)</td>
<td>62(2位)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>76(171位)</td>
<td>80(177位)</td>
<td>80(1位)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>59(263位)</td>
<td>78(115位)</td>
<td>78(2位)</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>76(111位)</td>
<td>63(218位)</td>
<td>63(2位)</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>44(323位)</td>
<td>79(130位)</td>
<td>79(2位)</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>76(73位)</td>
<td>73(139位)</td>
<td>73(2位)</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>65(221位)</td>
<td>78(120位)</td>
<td>78(2位)</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>73(139位)</td>
<td>66(138位)</td>
<td>66(2位)</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>33(340位)</td>
<td>9(339位)</td>
<td>9(2位)</td>
</tr>
</tbody>
</table>

総数 88 件

表 3.2：コンシェルジュの効果検証（偏差値表記）

<table>
<thead>
<tr>
<th>コンシェルジュ相談回数</th>
<th>解析Ⅰ相談回数</th>
<th>プレースメントテスト（2011年4月上旬）</th>
<th>解析Ⅰ期末テスト（2011年7月下旬）</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>20</td>
<td>29.39</td>
<td>61.50</td>
</tr>
<tr>
<td>18</td>
<td>13</td>
<td>42.03</td>
<td>59.51</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>34.71</td>
<td>41.78</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>36.04</td>
<td>60.95</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>64.64</td>
<td>67.53</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>51.34</td>
<td>62.05</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>24.07</td>
<td>51.09</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>43.36</td>
<td>47.00</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>50.68</td>
<td>57.12</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>43.36</td>
<td>54.93</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>54.67</td>
<td>47.60</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>33.38</td>
<td>56.57</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>56.66</td>
<td>53.28</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>47.35</td>
<td>56.02</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>52.67</td>
<td>49.46</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>26.06</td>
<td>18.22</td>
</tr>
</tbody>
</table>
図 3.2：解析 I 相談回数 10 回以上の学生の成績変化

図 3.3：解析 I 相談回数 4 回〜9 回までの学生の成績変化
図 3.4：解析Ⅰ相談回数 2 回～3 回の学生の成績変化

・学生の成績向上について
表や図にある相談回数と成績変化の関係を見ると、学習相談の頻度の高い学生は成績が向上している傾向が見える。特に相談回数が 8 回以上の学生たちは成績が大幅に上昇しているように見える。

3.2 学生が解けない問題の把握
複数の学生が同じ質問をしてくる場合がある（例：テイラー展開がよくわからない、という質問が多かった等）。その部分は多くの学生が理解していない可能性がある。そのような問題を把握することにより、今後の教育に役立てることができる。
表 3.3：学生からの相談が 5 件以上あった質問の具体例

<table>
<thead>
<tr>
<th>科目</th>
<th>質問内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>解析 I</td>
<td>逆三角関数がよくわからていない（逆三角関数を含む式の変形や微分、積分ができない）</td>
</tr>
<tr>
<td>解析 I</td>
<td>$f(x)$のn回導関数の求め方がわからない</td>
</tr>
<tr>
<td>解析 I</td>
<td>テイラー展開、マクローゲンゼン展開の計算がわからない</td>
</tr>
<tr>
<td>解析 II</td>
<td>重積分の領域（積分の範囲）の取りかたがわからない</td>
</tr>
<tr>
<td>線形代数</td>
<td>基底と次元についてよくわからない</td>
</tr>
<tr>
<td>線形代数</td>
<td>固有値、固有ベクトルの求め方がわからない</td>
</tr>
<tr>
<td>離散数学</td>
<td>ハッセ図の描き方がわからない</td>
</tr>
<tr>
<td>離散数学</td>
<td>$S = {1, \cdots, n}$とする。Sのべき集合から$[0, 1]$への部分関数は幾つ存在するのか？わからない</td>
</tr>
</tbody>
</table>

4. 今後の課題
・学生が一度に大勢来るときがあり、TA の補助があっても対応しきれないケースがある。
・学年、分野問わず数学関連全ての質問が来るため、その場では対応できず、調査して後日になるケースがある。学生にとっては二度手間になるので改善の必要がある。
・学生がより気軽に相談に来ることができるように環境作り。
・よくある質問を冊子にまとめられないのでか。
資料 3－3
●物理コンシェルジュ報告
1. コンシェルジュの概要
・コンシェルジュステーション
期間：2009年10月から実施
場所：図書館学習コーナー
分野：物理、電気回路、電磁気
対象学生：訪問してくる不定の学生
教員より指示のある指定学生
指導方法：①質問事項に対するアドバイス
基礎、原理に立ち返り、理解させる。
②指定学生に対しては、複数回にわたる基礎からの指導

・演習
①場所：講義室
対象学科：基礎物理（機械情報）
期間：2009年後期
対象学生：演習出席学生 約80名 毎回約10名指導
指導方法：演習問題が解けない学生に対するアドバイス
②場所：講義室
対象学科：基礎物理（生命情報）
期間：2010年前期，2011年前期
対象学生：演習出席学生 約50名 毎回約10名指導
指導方法：演習問題が解けない学生に対するアドバイス

2. コンシェルジュ実施状況
指導件数：157件
個別学生数：50名

<table>
<thead>
<tr>
<th>年度</th>
<th>10月</th>
<th>11月</th>
<th>12月</th>
<th>1月</th>
<th>2月</th>
<th>3月</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>1</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>2011</td>
<td>2</td>
<td>0</td>
<td>11</td>
<td>19</td>
<td>6</td>
<td>0</td>
<td>54</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td>5</td>
<td>21</td>
<td>7</td>
<td>18</td>
<td>3</td>
<td>0</td>
<td>84</td>
</tr>
</tbody>
</table>

-39-
○指導学生に見られる問題
 ・ベクトル演算、特に外積がわからない
 ・ベクトル演算、divの意味がつかめない
 ・電流とそれが作る磁界の式の立体的関係がつかめない
 ・外積の記号“×”マークと代数の掛け算との混同
 ・物理基準量（電位、電位差、運動エネルギー等）の理解が不足
 ・線積分、面積分の意味がつかめない
 ・角運動量の計算がわからない
 ・式（重心、万有引力等）の意味するところ、感覚的にりかしいできない
 ・慣性モーメント、回転運動がわからない
 ・高校物理の公式にないことでわからない問題が多い
 ・高校で物理未履修のため基本的な運動方程式が理解できない
 ・式展開中に数値代入する傾向があり式の意味を見失う
 ・微分、積分を高校で習わなかった
 ・複素数のRe、Imの記号の意味がわからなかった
 ・三角関数、辺の関係が判ってない、式展開ができない
 ・無気力学生

3．コンシェルジュ活動の成果
 ・学生に共通な問題点の把握
 ・成績不振学生の成績の向上—再履修のクリア
 ・全般的に成績向上の傾向

4．今後の課題
 ・3Dグラフィック表示等を行い、数式の意味を立体的に把握できるよう指導の工夫
 ・物理基準量を体感把握できるよう工夫
 ・基本的物理数学の早期強化
 ・演習解答のコンシェルジュ経由の返却等を行うなどコンシェルジュの活用拡大
 ・指導学生の成績の継続的把握ができるよう、教務担当事务や担当教員との連携が必要
資料 3 - 4

● 物理コンシェルジェ報告
 期間：2011年1月から担当

1. コンシェルジェの概要
 ・コンシェルジェステーション
 図書館に常設のコンシェルジェステーションで、相談にこられた学生の課題に対して、必要な関連知識や課題解決のヒントを示し、自ら解答できるように、指導した

 ・物理演習
 毎週、物理演習に参加し、行き詰っている学生、希望される学生に、演習問題を解くためのポイント、手順などを説明し、自ら解答できるように、指導した

2. コンシェルジェ実施状況
 ・コンシェルジェステーション（2010年：16名／142日、2011年：9名／125日）
 ・演習（2010年度：150名／26回、2011年度：118名／23回）
 ・補講（2010年度：162名／12回、2011年：193名／23回）
3. コンシェルジュ活動の成果
・コンシェルジュステーション（2010年：延べ16名、2011年：延べ9名）
 授業・演習・宿題などの理解できない内容や質問に対し、必要事項を解説し、来る時に
 分からなかった内容が、返る時には理解できている状態になるまで指導した。

< 指導内容 >

<table>
<thead>
<tr>
<th>内訳</th>
<th>学年 1</th>
<th>学年 2</th>
<th>学年 3</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>リサーチ</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>運動</td>
<td>7</td>
<td>1</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>回転</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>誤差</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>光</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>仕事</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>全般</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>熱</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>保存力</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>流体</td>
<td>5</td>
<td>3</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>2010年 集計</td>
<td>28</td>
<td>9</td>
<td>37</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>内訳</th>
<th>学年 1</th>
<th>学年 2</th>
<th>学年 3</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>リサーチ</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>回転</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>誤差</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>最小二乗法</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>全般</td>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>測定誤差</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>熱</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>標準偏差</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>表面張力</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>流体</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>2011年 集計</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>12</td>
</tr>
</tbody>
</table>

・演習（2010年度：延べ150名、2011年度：延べ118名）
 解答できない演習問題について、必要知識が身につくよう少しずつヒントを出し、最後
 まで解答できるようする事で、学力向上を図った。

4. 今後の課題
・演習や補習などを交え学力向上を図っているが、それでも一部の学生が不合格になって
 いる。
 コンシェルジュ内容を継続的に改善させる必要がある。
・一部に基礎を理解しないままにしている学生がいる。支援のきっかけを作りたい。
・現在図書館1階にコンシェルジュステーションがあるが、わざわざ階段を降りて、中を
 呪かないと、相談できるかどうか、分からない。できるだけ学生が頻繁に往来する場所
 に近く、通いやすがりに、状況がわかる場所にする事が、望まれる。
資料 3-5

● 情報コンシェルジェ報告
 期間：2011年1月～2012年1月

1．コンシェルジェの概要
・コンシェルジェステーション
 図書館に常設のコンシェルジェステーションで、相談にこられた学生の課題に対して、必要な関連知識や、課題解決のヒントを示し、自ら課題解決できるようになるまで、指導した
・プログラミング演習
 毎週、演習に参加し、行き詰っている学生、希望される学生に、演習問題を解くためのポイント、手順などを説明し、自ら解答できるようになるまで、指導した

2．コンシェルジェ実施状況
・コンシェルジェステーション（2010年：16名／142日、2011年：9名／125日）
・演習（2010年度：150名／26回、2011年度：118名／23回）

コンシェルジェ状況（指導延人数）

3．コンシェルジェ活動の成果
・コンシェルジェステーション（2010年：延べ25名、2011年：延べ208名）
 授業・演習・宿題などの理解できない内容や質問に対し、プログラムの前提として何が要求されているのかを明確にさせ、必要ならプログラム上のテクニックを解説し、来る時に分からなかった内容が、返る時には理解できている状態になるまで指導した。
・コンシェルジェステーションでの相談頻度とテスト成績の関係を整理すると、「相談頻度の高い学生ほどテスト成績が良い」という傾向が見られた。

・演習（2010年度：延べ156名、2011年度：延べ108名）
解答できない演習問題について、必要知識が身につくよう少しずつヒントを出し、最後まで解答できるよう指導した。

4. 今後の課題
・情報関連の広範な質問があり、5％程度は調査後の解答になっている。また、即答できず解答に時間のかかる質問もある。解答時間を低減させたい。
・現在図書館1階にコンシェルジェステーションがあるが、わざわざ階段を降りて、中を覗かないと、相談できるかどうか、分からない。できるだけ学生が頻繁に往来する場所に近く、通りすがりに、状況がわかる場所にする事が、望まれる。
・一部に基礎を理解しないままにしている学生がいる。支援のきっかけを作りたい。
資料 4－1

本学で作成した自主学習用 e-ラーニング教材について

学生が e ラーニングで自学自習するための教材を開発した。開発にあたっては、本学の e-ラーニング事業推進室の協力を得た。e ラーニング教材の開発は、本初年度学習力育成WGのメンバー及び学習コンシェルジュの各科目担当が行った。

● 数学

1. 解析学 講義テキスト

数学の教員が利用している講義ノートの電子化を行った。電子化には Tex を用いて行い、LaTeX2HTML を利用して Web 化した。この Web 教材を学内の学習支援サービスに、自主学習用のテキストとして公開した。Web 教材は内容で区切り、全部で 73 の項目に分けている。コース内の項目を選択すると、Web 教材が表示される。

学習支援サービスは、学内外問わずインターネットを視聴できる環境があれば利用可能である。

学習支援サービス内の解析学のコースとテキストの一部
物理:

1. Mathematica 講習会

学内で行われた Mathematica 講習会（6月28日、12月14日）を撮影。これを講習会の資料と合わせて、学内での学習支援サービスで公開した。動画は見やすくするために、講習会の内容に合わせて、動画を細かく区切っている。

講習会を受けなかった学生も、演習が行えるように演習用の Mathematica のファイルと、演習問題、その解答例等も公開している。

Mathematica 中級トレーニング

数学を学びながら、プログラミングスキルを高めるための Mathematica トレーニングを行っています。

概要：プログラミングスタイル

ほとんどの科学の分野で、プログラミングスキルは欠かせません。効率よくデータを処理し、数学的な問題を解くためには、プログラミングのスキルが必要です。この講座では、 Mathematica の機能を活用して、データを処理し、計算を行います。

Mathematica の中級トレーニングは、以下の講座から成っています。

1. 数学を学びながら、プログラミングスキルを高めるための Mathematica トレーニング
2. 数学を学びながら、プログラミングスキルを高めるための Mathematica トレーニング
3. 数学を学びながら、プログラミングスキルを高めるための Mathematica トレーニング

Mathematica 講習会のコース一覧、講習会の動画及び資料

－46－
2. 物理リメディアル講義 ビデオ教材

学内で実施しているリメディアル講義の初等物理補習を撮影し、これを自主学習用の教材として公開した。講義は1時間半行われるが、内容に合わせて編集を行い、一つの講義につき約10数の動画に分割しており、2011年では245の動画が存在する。また講義中に配布した資料も全て電子化して、コース上に展開している。

2009年には動画教材に合わせて、自身の理解度を確認できる小テスト問題を作成。小テストは自動採点型の選択問題であり、自分が理解できるまで何度も取り組むようになっている。
推薦試験合格者入学前学習用 テスト問題
本学の推薦試験合格者に事前学習として e・ラーニング教材を提供している。2010年度までは前項で説明した初等物理補習の動画教材をベースに、自主学習用の環境を整えたが、物理を全く受けていない学生向けの教材として、2011年度からNHK高校講座（インターネット公開）に合わせた、小テスト問題を作成した。

図のものは6.0 k2の電気であり、C1 = 20μF、C2 = 30μF及びスイッチSが閉じた状態である。1つみつのコンデンサーには電気は蓄えられてなく、スイッチSは開いている。

小テスト問題の一部（電気回路の問題）

分野は電気と力学に分け、問題は全部で152問作成した。学生は、まずNHKの高校講座の物理1の動画を見て学習し、その後で本学が作成した問題を学習支援サービス上で解答して、物理2の知識を得るまでの知識を身につける。

自宅にインターネット環境のない学生には、ノートPCとネットを使うためのモバイル機器を貸し出している。

情 報
情報処理技術者試験 過去問題の電子化
情報処理技術者試験問題の対策教材として、情報処理推進機構で公開している試験の過去問題を、推進機構の許諾を受けて電子化作業を行った。これらの試験問題の選択問題が大半であり、本学の学習支援サービスの自動採点問題に載せる事が可能である。
2006年度の基本情報処理試験の過去問題から電子化を行い、2009年度からは基本情報処理試験に加えて応用情報処理、ITパスポートも含めて電子化を行っている（合計1390問）。
電子化した問題は、問題ごとカテゴリ分類を行い、カテゴリ毎に小テストとして公開している。
一回のテストにつき、カテゴリ内から10問の問題がランダムに選択されて出題される。
過去問題のカテゴリー一覧と問題の一部（データベース技術）
資料4-2
物理リメディアルeラーニング教材作成のまとめ

●目的:
高校物理未経験学生を対象とした物理リメディアル教育の補助を行う
- eラーニング教材を作成しMoodleにて公開、初等物理レベルの底上げを目指す
- またその制作過程を通じて学生の指導を行う
- その他フィジカルコンピューティング支援、対外発表の補助など

●具体計画:
1. 高校物理授業で行われている物理実験の再現ビデオ不足分を作成する（演出、撮影、編集）
2. 物理実験をインタラクティブに疑似体験できるFlashアニメーションを作成する

●期間:
2009年10月～2011年3月、2011年10月～2012年1月

●スタッフ:
1. ビデオ作成: 上野先生、大西先生、山口先生、eラーニング室の学生、鳥越
2. アニメーション作成: 鳥越

●実施内容と成果:
1. 以下のビデオ作品に関して作成を完了しMoodleにて公開
 首振りエンジンの実験:
 首振りエンジンの模型を動作させ、熱エネルギーが仕事へ変換される様子を解説

2. 蒸気エンジンと発電の実験:
 蒸気エンジンの模型を動作させ、回転運動が電気エネルギーまで変換される様子を解説
・クントの実験:
振動が粉末を動かす様子を再現し、音波が現実的な空気振動であることを解説

・ローレンツ力の実験:
手製のカップスピーカーを通じて電磁誘導（ローレンツ力）を身近に体験

・音叉の実験:
二つの音叉を通じて音波の共鳴を解説

2. 以下のFlashアニメーションに関して作成を完了しMoodleにて公開
・モンキー・ハンティング:
ニュートンの運動方程式の本質についてインタラクティブに体験学習
・電気回路過渡応答 LCR 及び LR
電気回路の LCR 及び LR を組み合わせた過渡応答について、各定数を変化させその挙動を学ぶ

・電気回路過渡応答 CR
電気回路の CR を組み合わせた過渡応答について、各定数を変化させその挙動を学ぶ

・気柱共鳴
音波の共鳴現象について閉管（楽器）をモデルしたシミュレーションで理解を深める
・弾性衝突（反発係数）
 弾性衝突の様子を反発係数などのパラメータを変化させてシミュレーションし理解を深める

・ウェーブマシン
 波の反射や重なりについての挙動を自分の手と目で確認し理解を深める

・光の干渉（ヤングの実験）
 理想的にコヒレントな光を表現し、回折と干渉について理解を深める
・光の屈折（虹の見え方）
虹ができる様子を計算で表現し光の屈折について理解を深める

3. その他
・フィジカルコンピューティング教材作成支援
Arduinoを使ったフィジカルコンピューティング教材の制御用パネルをFlashで作成

・ビデオ作品作り
ビデオ作品作成を通じて絵コンテ作成など学生を指導
絵コンテの例

・発表補助
－九州国際テクノフェア（2011年11月7日 于 西日本総合展示場）
－大学ICT推進協議会（2011年12月8日 于 福岡国際センター）
資料 4-3

●Moodle による自主学習教材解説作成と掲載

高校物理未履修者のための自主学習手段として、Moodle に初等物理コースが準備されている。動画による講義のほか練習問題があり理解度の自主チェックができる。従来の選択式の解答正否、得点結果に加え、解説ページを作成し解答後のページからリンクできるようになった。
＜ねらい＞計算結果の正否だけでなく、結果を導き出す過程を理解できるようにする。

Moodle 初等物理の目次ページの例：

練習問題の例；

1 質量 m の物体を高さ h のところから自由落下（初速 0）させる。反発係数は ε。重力加速度は g である。なお、衝突は瞬時のであるが 0 < ε < 1 とする。

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>1</td>
<td>1/ε</td>
<td>1/ε²</td>
</tr>
</tbody>
</table>
解答にマークをし送信すると、正否結果と得点が表示される。

(4) 一回目の最高点に上がるまでの時間t_1は

\[h = \frac{1}{2}gt_1^2 \quad \text{より} \quad t_1 = \sqrt{\frac{2h}{g}} \]

従って

\[t_1 = \varepsilon \sqrt{\frac{2h}{g}} \]

(5) 二回目以降の衝突から最高点に達するまでの時間をt_2, t_3, \ldotsとするとき

\[t_n = t_{n-1} \cdot \frac{t_1}{\varepsilon} \]

落下開始後全に停止するまでの時間Tは

\[T = t_1 + 2t_2 + 2t_3 + \cdots + 2t_n \cdot \sum_{n=1}^{\infty} \left(\frac{1}{\varepsilon} \right)^n - 1 \]

最終解答だけでなく、解答導出過程を解説し必要に応じて図のよる説明を加えた。
資料４－４

●情報の自学自習教材の作成

１．コンシェルジェの概要
・eテスト
　予習により授業をより深く理解いただけるよう、次週の授業のポイントをまとめた小テストを作成し、webブラウザで全員に解いて頂いた。

２．コンシェルジェ実施状況
・eテスト（2010年度：1345名／11回、2011年：なし）

３．コンシェルジェ活動の成果
・eテスト（延べ受験者１３４５名、設問数：２７問、11回）
　授業のポイントと授業の導入部を小テスト形式にまとめ、機械１年の全員に毎週予習としてWeb上で解答頂いた。これにより授業内容の理解度を高める事ができた。

下図は「問題を解きながら予習ができるように工夫した」小テストの例である。

小テストmoodle（例：問題が解説を兼用）　ConciergeActivity

<table>
<thead>
<tr>
<th>ポイントになる概念の使用例</th>
<th>ポイントになる概念の解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>"処理を高速化するために、準備されたデータをそのまま使うのではなく、簡単な数学に変換して、その数値で処理する方法があります。この変換された簡単な数字を「hash値、ハッシュ値」と称する事があります。"</td>
<td>"例えは電話番号に、Aさんの電話番号1234abcdが入る時にAさんの電話番号1234abcdを表示する処理を考えます。審査時には、Aさんの電話番号が moons Abby で送られてくるとします。審査のたびに、何回でも登録された電話番号を一つずつ、全組とも同じですかと調べるのは、時間がかかり過ぎます。そこで①電話番号を登録する時は番号が1234ならば、hash値（例えば1×2×3=6）の値を記憶しております。審査と同時に審査中の電話番号のhash値を計算し、そのhash値を使ってアドレス帳に登録されている番号かどうかを調べる方法が考えられます。"</td>
</tr>
<tr>
<td>1つの答えを選択してください。</td>
<td></td>
</tr>
<tr>
<td>○3, 9, 15, 21, 27</td>
<td>○ ○</td>
</tr>
<tr>
<td>○2, 4, 6, 8, 13</td>
<td>○ ○</td>
</tr>
<tr>
<td>○0, 12, 18, 24, 30</td>
<td>○ ○</td>
</tr>
<tr>
<td>○1, 2, 3, 4, 5</td>
<td>○ ○</td>
</tr>
</tbody>
</table>

-57-
小テスト moodle（例：問題が解説を兼用） ConciergeActivity

12 void QuickSort(int data[], int left, int right)
13 {
14 int mid = (left+right) / 2; // 範囲の中央値
15 int pivot = data[mid]; // 範囲の中央値
16 int i=left, j=right;
17 while(1) // データを0（判定値以下）②大（判定値以上）に分け
18 {
19 int tmp;
20 while(data[i] < pivot) i++; // 左で判定値以上の値を探す
21 while(data[j] > pivot) j--; // 右で、判定値以下の値を探す
22 if(i >= j) break; // 左右が交差すると、 Dixis 養成
23 tmp = data[i]; // 左に大、右に小の値があったので、入れ替え
24 data[i] = data[j];
25 data[j] = tmp;
26 i++; // 入替し直したデータから繰り
27 j--;
28 } // ①つぶつのデータが2箇所ある場合、その小だけを仕分ける
29 if(left < i-1) QuickSort(data, left, i-1); // ①①のデータが2箇所ある場合、その小だけを仕分ける
30 if(right > j+1) QuickSort(data, j+1, right);"
資料4-5

大学に入学する君へ
— 大学生でも起こすためのヒントが満載の本 —

大学生だからできること
なんとなく過ごすだけじゃもったいない！
学ぶことが楽しくなる！
遊びなげがっつりと楽しめる！

目次
はじめに
第1部 大学を楽しもう
第1話 私はわたしを創る主人公
第2話 高等学校までの学習の総括と今後
第3話 高等学校と大学との違い
第4話 大学で学べる幸せ
第5話 獨学の励み
第6話 大学での学習
第7話 大学生の特徴
第8話 感性と理性
第9話 発想の転換を
第10話 ゆとりのある生活を
第11話 柔軟な思考を
第12話 数学で学ぶこと

第2部 大学生活を楽しもう
第13話 メロを取ろう
第14話 日記をつけよう
第15話 サークル活動で生活に広がりを
第16話 多弁になろう
第17話 人間（じんかん）距離を大切に
第18話 大学生活Nカ条

第3部 人生を楽しもう
第19話 情報の収集と発信
第20話 質問と知恵
第21話 自分の存在を明らかに
第22話 感謝の気持ちを忘れずに
第23話 本物志向の励め
数学的な思考例の解答・解説
あとがき

－59－
資料 5-1

● 数学ルーブリック

- 解析

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>数列</td>
<td>関数</td>
<td>導関数</td>
<td>積分</td>
<td>多変数関数の極値</td>
<td>偏導関数</td>
<td>重積分</td>
</tr>
<tr>
<td>数列の性質に関する定義、収束のための基本定理を理解している</td>
<td>片側極限を含む関数の極限に関する定義を理解している</td>
<td>関数を理解し、ロピタルの定理を使って不定形の極限を求めることができる</td>
<td>不定積分の基本定理を理解し、基本的な関数の不定積分を求めることができる</td>
<td>2変数関数の極値について理解している</td>
<td>簡単な2変数関数を偏微分でき、2変数関数のティラー展開の意義を理解している</td>
<td>重積分の定義を理解している</td>
</tr>
<tr>
<td>基本定理や有理化と換算する原理を利用して数列の極値を求めることができる</td>
<td>基本公式を用いて単純な関数の極値を求めることができる</td>
<td>合成関数の微分を含む基本的な微分法を使って関数の微分ができる</td>
<td>ラグランジュの未定乗数法によって条件付き極値問題を解くことができると</td>
<td>多変数関数の極値との関係について理解し、基本的な関数の極値を求めることができる</td>
<td>鎖法則を含む合成関数の微積分の公式を理解している</td>
<td>2重積分の基本定理を理解し、累積積分を用いて重積分の計算ができる</td>
</tr>
<tr>
<td>逆三角関数を含む重要な関数の極値を理解している。複雑な関数の極値を導出できる</td>
<td>対数微分法を使って微分ができる。パラメータ表示された関数を微分できる速度や加速度などの物理量を計算できる</td>
<td>回転体の体積、表面積の長さを計算できる</td>
<td>基本的な多変数関数の連続性を判定できる</td>
<td>複雑な合成関数の微積分を計算できる</td>
<td>ヤコビアンを理解し、極値点を求める方法を学ぶ</td>
<td>広義積分を計算できる</td>
</tr>
<tr>
<td>様々な関数のティラー展開を求めることができる</td>
<td>有理関数の不定積分ができる。広義積分を計算できる</td>
<td>複雑な合成関数の微積分を計算できる</td>
<td>ラグランジュの未定乗数法によって条件付き極値問題を解くことができる</td>
<td>一般の場合の立体の体積や曲面積を求めることができる</td>
<td></td>
<td></td>
</tr>
<tr>
<td>剰余項を用いて誤差の評価ができる</td>
<td>数列の収束に関するε-δ論法を理解している</td>
<td>関数の収束に関するε-δ論法を理解している</td>
<td>数列の一極数列について理解している</td>
<td>積分記号下での積分積分を理解している</td>
<td></td>
<td></td>
</tr>
<tr>
<td>数列の収束に関するε-δ論法を理解している</td>
<td>関数の収束に関するε-δ論法を理解している</td>
<td>数列の一極数列について理解している</td>
<td>積分記号下での積分積分を理解している</td>
<td>一般の場合の立体の体積や曲面積を求めることができる</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>確率と確率変数</td>
<td>多変量分布</td>
<td>確率変数の独立性</td>
<td>1. 確率変数の独立性</td>
<td>2. 確率変数の期待値と分散を計算できる</td>
<td>3. 確率変数の独立性の意味を理解できる</td>
</tr>
<tr>
<td>2</td>
<td>2. 一様分布、指数分布、正規分布およびそれらの関数の計算</td>
<td>分布関数の基本的計算ができる</td>
<td>基本的データ処理ができる</td>
<td>検定の意味を理解できる</td>
<td>推定の意味を理解できる</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3. さまざまな分布にしたがう確率変数の期待値と計算できる</td>
<td>確率変数系の独立性の意味を理解できる</td>
<td>基本的分布の特性関数、母関数の計算ができる</td>
<td>大数の法則、中心極限定理の意味が分かる</td>
<td>傾倒仮説、有意水準について理解できる</td>
<td>平均、分散、出現率の区間推定を行うことができる</td>
</tr>
<tr>
<td>4</td>
<td>4. t分布、x二乗分布、F分布の密度関数の計算ができる</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5. 正規分布の特性関数、母関数の計算できる</td>
<td>大数の法則の証明が可能</td>
<td></td>
<td></td>
<td>相関関係の確率を推定することができる</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6. 確率変数の和の確率収束と特性関数の収束が分かる</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>行列と行列式</td>
<td>行列の対角化</td>
<td>有理化</td>
<td>固有値</td>
<td>固有ベクトル</td>
<td>線形変換</td>
<td>準対角形</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>----------</td>
</tr>
</tbody>
</table>

- 線形変換
- 固有値
- 固有ベクトル
- 類型化
微分方程式

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>微分方程式の基本概念</td>
<td>1階微分方程式</td>
<td>高階微分方程式</td>
<td>連立微分方程式</td>
<td>演算子法</td>
<td>Laplace変換</td>
<td>数値計算法</td>
</tr>
<tr>
<td>2</td>
<td>物理的現象や社会科学的現象を微分方程式で表現できる</td>
<td>定数係数非定常微分方程式の解を求めることがでる</td>
<td>2階線形同次微分方程式の解の1次独立性を求める</td>
<td>仮数行列が2次正方行列である定数係数連立微分方程式を解くことができる</td>
<td>Euler法を理解し、これを利用した微分方程式の数値計算をすることができる</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ベクトル場を理解し、ベクトル場と微分方程式の関係を説明することができる</td>
<td>同次定形方程式、ベルヌイ型方程式、リッチャ型などの非線形微分方程式を解くことができる</td>
<td>定数係数2階線形同次微分方程式の解の1次独立性を求める</td>
<td>微分演算子とその逆変換について理解し、それを説明することができる</td>
<td>Runge-Kutta法を理解し、これを利用した微分方程式の数値計算（近似計算）をすることができる</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>完全微分方程式を解くことができる</td>
<td>2階線形微分方程式の解の1次独立性を求める</td>
<td>数学的に定数係数微分方程式を解くことができる</td>
<td>微分演算子を用いて、定数係数線形微分方程式を解くことができる</td>
<td>ラプラス変換の計算ができる</td>
<td>Java言語などを用いて、微分方程式の数値解法によるプログラミングを実践することができる</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>定数係数n階線形微分方程式を解くことができる</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>順次降下法により、高階微分方程式を解くことができる</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>微分方程式の解の構造安定性について理解し、論じることができる</td>
<td>線形微分方程式を解く、または近似解を求めることがでる</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 2次正方行列の標準形を求めることができる \(n \times n \)正方行列の標準形を求めることができる
<table>
<thead>
<tr>
<th>レベル</th>
<th>基礎知識</th>
<th>物体の運動</th>
<th>仕事とエネルギー</th>
<th>運動量、角運動量</th>
<th>剛体</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S1単位系（補助単位系を含む）を理解して、正しく使用することができる。</td>
<td>質点、力、質量、位置、速度、加速度などの物理量の概念を説明できる。</td>
<td>仕事とエネルギー、運動エネルギー、位置エネルギーの基本的な概念を理解している。</td>
<td>運動量、力積についての基本的な概念を持っている。</td>
<td>位置の原理、天秤の釣り合い、慣性について説明できる。</td>
</tr>
<tr>
<td>2</td>
<td>ラジアン、三角関数、また三角関数の近似について理解している。</td>
<td>時間による運動の位置、速度、加速度について微分および積分により関係を説明できる。</td>
<td>仕事と物体の運動との関係を力によって説明することができる。</td>
<td>運動量保存則を理解している。</td>
<td>剛体の重心を理解し、計算して求めることができる。</td>
</tr>
<tr>
<td>3</td>
<td>テーラー展開を使った近似式の導出ができる。</td>
<td>運動の第1法則から第3法則を理解している。</td>
<td>力のエネルギー保存則を理解している。</td>
<td>運動量、力積と物体の衝突運動の関係を説明することができる。</td>
<td>剛体の釣り合いや回転の条件を理解している。</td>
</tr>
<tr>
<td>4</td>
<td>ベクトルを理解し、数式の基礎的な演算ができる。</td>
<td>1次元の運動としての等速運動、等加速度運動、単振動を方程式により説明できる。</td>
<td>1次元の運動を理解し、力のモーメントを理解している。</td>
<td>剛体のモーメントを理解し、これを求めることができる。</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>平面上の運動を直交座標系および極座標系で表すことができる。</td>
<td>2次元の運動（斜面での物体の運動、放物運動、等速円運動）を1次元の運動の合成によって説明し方程式を立てることが可能。</td>
<td>力学的エネルギー保存則を利用して様々な運動を説明することができる。</td>
<td>角運動量、角運動量保存則を理解している。</td>
<td>剛体の平面内での運動について説明することができる。</td>
</tr>
<tr>
<td>6</td>
<td>空間の運動をデカルト座標系、極座標系で表すことができる。</td>
<td>1次元の運動を考慮したより現実に近い運動を、身近な現象と対応づけ式により説明することができる。</td>
<td>保存力(rot F=0)について理解し、説明できる。</td>
<td>角運動量、力のモーメント、角運動量保存則を利用して運動を説明することができる。</td>
<td>剛体の自由度について説明することができる。</td>
</tr>
<tr>
<td>7</td>
<td>態性力を理解し、見かけの力として、速さ力、コリオリの力を説明できる。</td>
<td>第1〜3宇宙速度、ケプラーの3法則について説明できる。</td>
<td>解析力学の初歩について理解している。</td>
<td>剛体の自由度について説明することができる。</td>
<td></td>
</tr>
</tbody>
</table>

1〜2 高校
2〜6 大学（基礎的な内容）
6〜7 大学（高度な内容）
<table>
<thead>
<tr>
<th>レベル</th>
<th>基礎知識</th>
<th>物体（質点）の運動</th>
<th>仕事とエネルギー</th>
<th>運動量、角運動量、トルク（力のモーメント）</th>
<th>剛体、質点系の運動（多体問題）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SI単位系（補助単位系を含む）を理解して、正確に使うことができる。</td>
<td>質点、力、質量、位置、速度、加速度などの物理量の概念を説明できる。</td>
<td>仕事とエネルギー、運動エネルギー、位置エネルギーの基本的な概念を理解している。</td>
<td>運動量、力積についての基本的な概念を持っている。</td>
<td>これらの原理、天秤の釣り合い、慣力について説明できる。</td>
</tr>
<tr>
<td>2</td>
<td>弧度法（ラジアン）、三角関数、三角関数の近似について理解している。</td>
<td>時間による運動の位置、速度、加速度について微分および積分により関係を説明できる。</td>
<td>仕事と物体の運動との関係を力によって説明することができる。</td>
<td>運動量保存則を理解している。</td>
<td>剛体の重力理解し、計算して求めることができる。</td>
</tr>
<tr>
<td>3</td>
<td>テーラー展開を使った近似式の導出ができる。</td>
<td>運動の第1から第3法則を理解している。</td>
<td>エネルギー保存則を理解している。</td>
<td>運動量、力積と物体の衝突や分離運動の関係を説明することができる。</td>
<td>剛体の釣り合いや回転の条件を理解している。</td>
</tr>
<tr>
<td>4</td>
<td>ベクトルを理解し、数式の基礎的な演算ができる。（外積、勾配grad）</td>
<td>1次元の運動としての等速運動、等加速度運動、単振動を方程式により説明できる。</td>
<td>トルク（力のモーメント）を理解している。</td>
<td>慣性モーメントを理解し、これを求めることができる。</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>平面上の運動を直交座標系および極座標系で表すことができる。</td>
<td>2次元の運動（斜面上の物体の運動、放物運動、等速円運動）を1次元の運動の合成によって説明し方程式を立てることができる。</td>
<td>力学的エネルギー保存則を利用して様々な運動を説明することができる。</td>
<td>角運動量、角運動量保存則を理解している。</td>
<td>剛体の平面内で運動について説明することができる。</td>
</tr>
<tr>
<td>6</td>
<td>空間の運動をデカルト座標系、極座標系で表すことができる。</td>
<td>摩擦や空気抵抗を考慮したり、現実に近い運動を、より近い現象と対応付けにより説明することができる。</td>
<td>保存力（回転rot F=0）について理解し、説明できる。</td>
<td>角運動量、トルク（力のモーメント）、角運動量保存則を利用して運動を説明することができ る。</td>
<td>剛体の自由度について説明することができる。</td>
</tr>
<tr>
<td>7</td>
<td>慣性力を理解し、見かけの力として、遠心力、コリオリの力説明できる。</td>
<td>第1〜3宇宙速度、ケプラーの3法則について説明できる。</td>
<td>熱・統計（解析）力学の初步について理解している。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>レベル</td>
<td>基礎知識</td>
<td>電界、電位</td>
<td>導体、誘電体の性質</td>
<td>抵抗の計算</td>
<td>磁束密度B、ベクトルポテンシャルA</td>
</tr>
<tr>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------------</td>
<td>------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>ベクトルの和、差、内積について理解し、計算できる。</td>
<td>クーロンの法則、ガウスの法則を説明できる。</td>
<td>導体と誘電体の違いを説明できる。</td>
<td>オームの法則、抵抗の直列並列接続の合成抵抗を求めることができる。</td>
<td>ビオ・サバールの法則、アンペールの法則を用いて説明できる。</td>
</tr>
<tr>
<td>2</td>
<td>スカラーとベクトルの違いが分かる。ベクトルの表記、成分、大きさを説明できる。</td>
<td>直線、円弧における電界、電位をクーロンの法則を用いて計算することができる。</td>
<td>導体、誘電体の性質について説明することができる。</td>
<td>オームの法則が経験則であり、粘性のある電子の運動により説明できる。</td>
<td>直線、円弧に通電したときの、磁束密度をビオ・サバールの法則を用いて計算することができる。</td>
</tr>
<tr>
<td>3</td>
<td>ベクトル場を理解し、基本的なベクトル場を表現することができる。</td>
<td>点電荷、線電荷、面電荷における電界、電位をガウスの法則を用いて計算することができる。</td>
<td>電荷保存の法則、静電誘導および接地を理解している。</td>
<td>3つの方法を使って様々な形状の抵抗体の抵抗を計算することができる。</td>
<td>線、薄板に通電したときの、BとAをアンペールの法則を用いて計算することができる。</td>
</tr>
<tr>
<td>4</td>
<td>ベクトルの外積（grad, div, rot）の計算ができる。</td>
<td>球、円柱、平面に分布した電荷による電界、電位を計算できる。</td>
<td>球、円柱、平面に分布した電荷による電界、電位を計算できる。</td>
<td>抵抗率の異なる物体を組み合わせた抵抗体の抵抗を計算できる。</td>
<td>円柱、平面に通電したときの、BとAをアンペールの法則を用いて計算することができる。</td>
</tr>
<tr>
<td>5</td>
<td>直角直交座標系、円柱座標系、極座標系について理解している。</td>
<td>電界が保存でありることを理解している。</td>
<td>静電容量、静電エネルギーを計算することができる。</td>
<td>キルヒホフの法則についての説明を説明することができる。</td>
<td>ソレノイドコイルに通電したときの、BとAをアンペールの法則を用いて計算することができる。</td>
</tr>
<tr>
<td>6</td>
<td>線積分、面積分、体積分の計算ができる。</td>
<td>特殊な形状（線電荷の組み合わせ、半球面）について電界、電位を計算できる。</td>
<td>境界条件を理解して、いくつかの誘電体を含む場合について静電容量などを計算できる。</td>
<td>コンダクタンスを利用して抵抗体の抵抗を計算できる。</td>
<td>特殊な形状（直線電流の組み合わせ）についてBとAを計算できる。</td>
</tr>
<tr>
<td>7</td>
<td>ストークスの定理、ガウスの定理、グリーンの定理を利用して計算ができる。</td>
<td>微分形式から電界、電位を計算することができる。</td>
<td>鎖像法や特殊解法により、静電界を求めることができる。</td>
<td>特殊解法により、電流の流れを計算することができる。</td>
<td>微分形式から磁束密度、ベクトルポテンシャルを計算することができる。</td>
</tr>
</tbody>
</table>

１～２ 高校
２～６ 大学（基礎的な内容）
６～７ 大学（高度な内容）
資料 5-3

共通教育化に向けて「情報科目」

方針：J07 を基本（主として CS, CE のコア）とし、現行の情報基礎科目の一部修正で対応し、教職課程「情報」の設置要件も考慮する。
情報共通科目：大綱の枠内の 8 科目。
情報システム：各学科で異なってもよいが、これら的内容は最低限カバーする必要がある。
情報と社会：人間関係で講義。
単位数については、プログラミング系の演習付き科目については、時数に見合った単位数として 3 単位とした。

<table>
<thead>
<tr>
<th>区分</th>
<th>科目名</th>
<th>備考</th>
<th>授業時数</th>
<th>単位</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 前</td>
<td>1 後</td>
</tr>
<tr>
<td>情報教養</td>
<td>計算機リテラシー</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>情報数学</td>
<td>離散数学 I</td>
<td>集合, 関数, 関係, グラフ, 歳納法</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>離散数学 II</td>
<td>論理数学とオートマトン論（入門）</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>情報基礎</td>
<td>プログラミング</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>データ構造とアルゴリズム</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>プログラム設計</td>
<td>HCI を含む</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>阿ーキテクチャト</td>
<td>阿ーキテクチャと構成</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>阿ーキテクチャト II</td>
<td>OS の基礎を含む</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>情報システム</td>
<td>計算機ネットワーク</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>データベース</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ソフトウェア工学</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>マルチメディア表現とグラフィックス</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>情報と社会</td>
<td>情報倫理</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>知的財産権</td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

†: HCI (ヒューマンコンピュータインタラクション)
資料5－4

●英語シラバス（初年次）
『言語系英語科目』全体の総論
言語系英語科目は、必修科目と選択（必修）科目に分かれており、中等教育での「学習対象」としての英語から上級学年専門教育で必要となる「実践的コミュニケーション手段」としての英語への橋渡しとして、題材・分野に偏らない総合的運用能力の育成・向上を図る。

『必修英語』の総論
授業の概要
必修英語科目は英語I、英語II、英語III、英語IVで構成されており、それぞれ「聴く」・「読む」・「話す」・「書く」の4技能を個別に焦点とするが、全科目は密接に関連しており、基礎文法事項の定着、基礎的英文読解能力、英文書作成能力の修得を共通の軸にしている。
全科目を履修せることにより4技能の総合的運用能力育成を図る。
カリキュラムにおけるこの授業の位置付け
必修英語科目は、入学前の中等教育で既習済みの基礎技能を前提とする大学英語での初級と位置づけられ、選択（必修）英語科目履修の要件となる。
授業項目（授業計画）
具体的には別記の英語I、英語II、英語III、英語IVをそれぞれ参照すること
授業の進め方
各科目単位内に30名前後のクラス編成を行うが、標準採用テキストにより文法事項、及び英文書作成技術を各科目全クラス共通して講義形式により解説し、実習形式で練習させる。各科目全クラス共通して英文書課題を2つ以上課し、期末には標準採用テキストの該当課題を含んだ筆記試験を行う。また、クラスの能力に応じて、担当講師が教材・授業項目を補完・追加し、小テスト・追加課題を課す。
授業の達成目標（学習・教育目標との関連）
論理的な思考に基づいた表現力、外国語によるコミュニケーションの基礎能力を養い、それらを積極的に活用できる力を育てる。
具体的には以下の項目を目標としている。
基礎文法事項を理解する。（およそTOEICの350点程度以上）
簡易な英文書作成の形式・構成に関する基礎を理解する。
基礎的読解・聴解能力を修得する。

-68-
成績評価の基準および評価方法
各科目全クラス共通に採用する標準テキストからの文法事項、読解、英文書作成技術についての中間・期末試験と課題より80％、残り20％を各担当講師がクラスの習熟度に応じて課すテスト・課題、授業中の応答・発表等により評価する。

キーワード
総合的英語運用能力、読解能力、基礎文法事項、英文書作成技能

教科書
文法学習用に標準採用するテキストは年度初頭に決定し掲示により周知する。
また、各クラスで個別に担当講師が必要に応じて教材を補充・追加配付する。

参考書
必要に応じて各クラスで担当教官が適宜推奨する。

備考
クラス分けについては、掲示により発表する。
英語I、英語IIについては、教職課程においても必修科目に指定されている。
2年次以降から選択（必修）英語科目を履修するには、全必修科目の単位を修得済みでなければならない。
必修英語科目の再履修者は、それぞれ再履修者専用の英語I・英語II・英語III・英語IVで受講すること。
選択（必修）英語科目の多くは、TOEICの点数により履修制限を課すことが多いので、
最低350点は得点できるよう早期に受験することを推奨する。また、在学中2回は受験料を補助する制度もある。詳細は掲示等により周知する。

英語1
カリキュラムにおけるこの授業の位置付け
1年前期の必修科目として、主に「聴く」能力の向上に焦点をあてる。1年後期の英語II1の前提となる。また、2年次からの選択（必修）英語科目の履修要件科目でもある。

授業項目（授業計画）
文法
文のタイプ
時制概念
単純過去形
過去進行形
数量：可算名詞・不可算名詞
冠詞
比較級と最上級
信書
書式と正書法
私的社交文：体裁
私的社交文：頭書と敬辞、結辞と署名
私的社交文：本文の要件と論理構成
ビジネス・レター：体裁と禁則
ビジネス・レター：頭書と敬辞、結辞と署名
ビジネス・レター：本文の要件と論理構成

授業の進め方
上記の文法と信書の各項目を並行して進め、テキストの練習問題を予習してきている事
を前提に質問を受け付け、重点事項を解説し、実習形式で練習させる。
信題課題と中間及び期末試験を行う。
クラスごとに担当講師が必要に応じて授業項目の順序を入れ替えたり、教材・項目を補
完・追加し、小テスト・追加課題を課すことがある。
授業の達成目標（学習・教育目標との関連）
論理的な思考に基づいた表現力、外国語によるコミュニケーションの基礎能力を養い、
それらを積極的に活用できる力を育てる。
具体的には以下の項目を目標としている。
基礎文法事項を理解する。（およそTOEICの300点以上）
簡易な英文書作成の形式・構成に関する基礎を理解する。
基礎的読解・聴解能力を修得する。
選択（必修）英語科目で求められる最低限の運用能力（およそTOEIC300点以上）、基本的な
聴解・会話能力、及び簡易な英文信書作成の形式・構成に関する基礎技能を身に付ける
ことを目的とする。

成績評価の基準および評価方法
中間試験（文法10%、書式・正書法10%）、読解小テスト20%、信書課題20%、
共通標準化期末試験（信書作成20%）、及び担当講師によるテスト・課題20%で評
価する。

キーワード
聴解能力、通信文書

教科書

参考書
英和及び和英の大学用中辞典（電子辞典より紙冊子媒体の方が望ましい）
その他、各担当講師より適宜指示する。
備考
クラス分けについては、掲示により発表する。
教職課程においても必修科目に指定されている。同学期の英語IIを並行して履修すること。
また、再履修者は、再履修専用の「英語I」で受講すること。

『英語 II』
カリキュラムにおけるこの授業の位置付け
1年前期の必修科目として、主に「読み」能力の向上に焦点をあてる。1年後期の英語IV
の前提となる。また、2年次からの選択(必修)英語科目の履修要件科目でもある。
授業項目（授業計画）
文法
現在形
現在進行形
陳述と否定
接続と連結
願望と欲求
不定詞と動名詞
未来、予定、意図
丁寧表現と儀礼的表現
段落
構造：日本語との違い、書式と体裁
主題文：主題と管制概念
本文：論理構成、関連性
本文：説明、記述、展開
本文：リスト化と連結
結文：要点再述、展望、見解
授業の進め方
上記の文法と段落の各項目を並行して進め、テキストの練習問題を予習してきている事
を前提に質問を受け付け、重点事項を解説し、実習形式で練習させる。
段落課題と中間及び期末試験を行う。
クラスごとに担当講師が必要に応じて授業項目の順序を入れ替えて、教材・項目を補
完・追加し、テスト・追加課題を課すことがある。
授業の達成目標（学習・教育目標との関連）
論理的な思考に基づいた表現力、外国語によるコミュニケーションの基礎能力を養い、
それらを積極的に活用できる力を育てる。
具体的には以下の項目を目指としている。
基礎文法事項を理解する。（およそTOEICの300点以上）
簡易な英文書作成の形式・構成に関する基礎を理解する。
基礎的読解・聴解能力を修得する。
選択（必修）英語科目で求められる最低限の運用能力（およそTOEIC300点以上）、基本的な聴解・会話能力、及び簡易な英文書作成の形式・構成に関する基礎技能を身に付けることを目的とする。

成績評価の基準および評価方法
中間試験（文法10%、段落概念10%）、段落作文課題20%、文法課題10%、共通標準化期末試験（文法20%、段落作文10%）、及び担当講師によるテスト・課題20%で評価する。

キーワード
聴解能力、段落

教科書
その他、各担当講師より適宜指示する。

参考書
英和及び和英の大学用中辞典（電子辞典よりも紙冊子媒体の方が望ましい）
その他、各担当講師より適宜指示する。

備考
クラス分けについては、掲示により発表する。
教職課程においても必修科目に指定されている。同学期の英語Iを並行して履修すること。
また、再履修者は、再履修者専用の「英語II」で受講すること。

『英語 III』
カリキュラムにおけるこの授業の位置付け
1年後期の必修科目として、主に「話す」能力の向上に焦点をあてる。1年前期の英語I、IIを前提とし、2年次からの選択（必修）英語科目の履修要件科目でもある。

授業項目（授業計画）
文法
必要性と義務
法助動詞
単純現在形と未来時制
条件文
時系列と接続
不定詞と動名詞
習慣
評論
 対象のタイプ：書籍、論文、映画
構成：要約と参照
構成：感想と見解
構成：章立て分節
注記、謝辞、文責

授業の進め方
上記の文法と段落の各項目を並行して進め、テキストの練習問題を予習してきている事を前提に質問を受け付け、重点事項を解説し、実習形式で練習させる。
評論課題と中間及び期末試験を行う。
クラスごとに担当講師が必要に応じて授業項目の順序を入れ替えたり、教材・項目を補完・追加し、小テスト・追加課題を課すことがある。

授業の達成目標（学習・教育目標との関連）
論理的な思考に基づいた表現力、外国語によるコミュニケーションの基礎能力を養い、それらを積極的に活用できる力を育てる。
具体的には以下の項目を目標としている。
基礎文法事項を理解する。 （およそTOEICの350点以上）
簡易な英文書作成の形式・構成に関する基礎を理解する。
基礎的読解・聴解能力を修得する。
選択（必修）英語科目で求められる最低限の運用能力（およそTOEIC350点以上）、及び簡易な英文評論作成の形式・構成に関する基礎技能を身に付けることを目的とする。

成績評価の基準および評価方法
中間試験（文法10％、評論概念10％）、読解小テスト20％、評論課題20％、共通標準化期末試験（評論作成20％）及び担当講師によるテスト・課題20％で評価する。

キーワード
聴解能力、段落

教科書
その他、各担当講師より適宜指示する。

参考書
英和及び和英の大学用中辞典（電子辞典より紙冊子媒体の方が望ましい）
その他、各担当講師より適宜指示する。

備考
クラス分けについては、掲示により発表する。
教職課程においても必修科目に指定されている。学年期の英語IVを並行して履修すること。
また、再履修者は、再履修者専用の「英語III」で受講すること。

『英語 IV』
カリキュラムにおけるこの授業の位置付け
1年後期の必修科目として、主に「書く」能力の向上に焦点をあてるが、まとめとして4技能を統合し総合能力の向上につとめる。1年前期の英語I、IIを前提とし、2年次からの選択（必修）英語科目の履修要件科目でもある。

授業項目（授業計画）

文法
受身態と無生物主語
反実仮想
可能性と蓋然性
相対時制と相
完了形
完了進行形
伝聞、話法、時制一致

要約
対象のタイプ：フィクションとノンフィクション
情報選択：圧縮、省略、欠落、追加
情報整理：提示順序と文体
引用、出典、書誌情報
科学技術論文の構成

授業の進め方
上記の文法と評論の各項目を並行して進め、テキストの練習問題を予習している事を前提に課題を受け付け、重点事項を解説し、実習形式で練習させる。
評論課題と中間及び期末試験を行う。
クラスごとに担当講師が必要に応じて授業項目の順序を入れ替えたり、教材・項目を補完・追加し、テスト・追加課題を課すことがある。

授業の達成目標（学習・教育目標との関連）
論理的な思考に基づいた表現力、外国語によるコミュニケーションの基礎能力を養い、それらを積極的に活用できる力を育てる。
具体的には以下の項目を目標としている。
基礎文法事項を理解する。（およそTOEICの350点以上）
簡易な英文書作成の形式・構成に関する基礎を理解する。
基礎的読解・聴解能力を修得する。
選択（必修）英語科目で求められる最低限の運用能力（およそTOEIC350点以上）、及び簡易な英文評論作成の形式・構成に関する基礎技能を身に付けることを目的とする。

成績評価の基準および評価方法
中間試験（文法10％）、文法課題10％、要約課題20％、共通基準化期末試験（文法20％、要約作成20％）、及び担当講師によるテスト・課題20％で評価する。

キーワード
文法、要約、総合能力

教科書
その他、各担当講師より適宜指示する。

参考書
英和及び和英の大学用中辞典（電子辞典より紙冊子媒体の方が望ましい）
その他、各担当講師より適宜指示する。

備考
クラス分けについては、提示により発表する。
教科書以外においても必修科目に指定されている。同学期の英語IIIを並行して併修すること。
また、再履修者は、再履修者専用の「英語IV」で受講すること。

『選択必修英語』総論
授業の概要
必修英語科目で修得した基礎的運用能力を基に、受講生の選択により実用能力の向上を図る。「聴く」、「読む」、「話す」、「書く」の4技能を各々個別に特化した科目や、特定の技能を特化せず、全必修英語科目の統合継続として設けられている科目等、異なるレベル、題材・テーマで多種多様に開設されている。TOEICの習得点を基に習熟度・技能別に別に50名前後のクラス編成を行う。
個別の授業概要、授業目的、進め方、達成目標、成績評価の基準および評価方法、教科書、参考書等については各科目・担当講師毎に各学期初めに提示する。
カリキュラムにおけるこの授業の位置付け
必修英語科目を既習済みであること（およそTOEICの350点以上）を前提とする大学英語の中級と位置づけられ、学科によっては専門教育で後継として科学技術英語科目が用意さ
れている。
授業項目（授業計画）
各科目・担当講師毎に各学期初めに掲示する。
授業の進め方
各科目・担当講師毎に各学期初めに掲示する。
授業の達成目標（学習・教育目標との関連）
論理的な思考に基づいた表現力、外国語によるコミュニケーションの基礎能力を養い、
それらを積極的に活用できる力を育てる。
具体的には、各科目・担当講師毎に各学期初めに掲示する。
成績評価の基準および評価方法
各科目・担当講師毎に各学期初めに掲示する。
キーワード
個別技能特化、レベル制
備考
選択（必修）英語科目の履修は、英語I、英語II、英語III、英語IVの全必修科目の単位を修得済みでなければならない。
多くの選択（必修）英語科目は、人数やTOEICの点数により履修制限を課すことが多いので、早期に受験し、最低350点は得点しておくことを推奨する。また、在学中2回は
受験料を補助する制度もある。詳細は掲示により周知する。
資料6－1

電子オルゴールなどのチャレンジ学習は、学生に企画・運営を依頼して実施した。資料6-1の電子オルゴールは、九州工業大学生協の学生委員が主体となって実施した。プログラミングコンテストに関しては、九州工業工業大学工大祭実行委員会の学生が主体となって実施した。

電子オルゴール作成会報告書

1. 実施日時
 第1回 2011年4月29日（昭和の日）10:00～19:00
 第2回 2011年5月07日（土）10:00～19:00

2. 参加人数
 ·第1回9人+作成スタッフ5人
 ·第2回14人+作成スタッフ4人

3. 実施体制
 3.1 準備段階
 ·作成会の内容は一人の学生が考え、生協学生委員内で相談して決めた。
 ·準備は生協学生委員だけでなく、伊藤先生・西野先生・新山先生・生協の大泉さん等の多くの方が協力をいただきました。

3.2 当日
 ·グループごとに実施。
 ·1グループ参加者3～4名＋作り方を教えるスタッフ1名＋一緒に作成するスタッフ1名。スタッフには事前に作り方を教え、参加者にしっかりとした対応が出来るようにした。
 ·作成面に関しては経験の深い学生数名をフリースタッフとして、説明スタッフの補助として対応した。
 ·新山先生にも技術面、安全面等に配慮した指導等をしていただいた。
4. 実施内容
 ・当日の流れ
 09:30 受付開始
 10:00 作成開始（班ごとに安全所の注意と作り方の説明）
 12:00 昼ご飯
 13:00 作成続き
 19:00 終了

5. 成果
 5.1 参加者の声（アンケートより）
 【良】・結構難しくて大変でした。でも、苦しかった分、音が鳴ったときは嬉しい。
 ・丁寧に教えていただきありがとうございました。
 ・一から回路を作るのがとても楽しかったです！
 【悪】・かなり精神力が必要な気がします。

「勉強になったか」の項目で、はい→23人、いいえ→0人（作成スタッフ除く）

5.2 目標の達成度
 目標：①ものづくりの楽しさを感じてもらう
 ②勉強へのやる気をUPしてもらう
 達成度：①については、アンケート結果や作成中の様子からも、十分達成できた。
 ②については達成度としてはもう少しである。
 昨年度に引き続きの課題として、ソフト面でのアプローチも必要である。
プログラミングコンテスト
KIT48 総選挙～PROGRAMMING!!～
募集要項

主催：九州工業大学第51回工大祭実行委員会
共催：SE 塩
協賛：株式会社ハウスインターナショナル

趣旨
本コンテストでは、工大祭来場者に直接作品を触ってもらう事でプログラミングについて興味を持ってもらい、参加者には本コンテストで今後の活動に繋がるような経験をしてももらう事を目的としています。そのためにコンテスト参加者に工大祭来場者が触って楽しめるプログラムを作成してもらい、それを審査員と来場者で審査します。
審査は審査員がアイデア、技術力、完成度、プレゼンテーション力の項目で作品の評価を行い、来場者にも投票形式で評価をしてもらい、その結果で上位3作品を表彰し、賞品を贈呈します。

募集期間、開催日時、場所
1. 募集期間
　平成23年8月12日～平成23年11月5日
2. 開催日時
　11月15日（土）12:00～15:00（工大祭1日目）
3. 場所
　九州工業大学飯塚キャンパス内2101講義室

応募資格
・学生であること
他大学（九州工業大学以外）の学生でも参加可能です。チームで応募する場合は、メンバー全員が学生であることを条件とします。（コンテスト当日に学生証等、学生と確認できるものを確認させて頂く場合があります）また、コンテスト当日に会場でプレゼンテーションを行って頂く必要があります。そのため、当日プレゼンテーションを行う地理的、時間的な調整が可能なことが条件となります。ただし、交通費などの支給はできません。
応募方法

メールで応募する場合

以下の必要事項を記入した上でアーカイブしたソースコードと可能な場合は実行形式のファイルを添付して募集期間内にsejuku2011@gmail.comまで送信してください。

必要事項
・氏名、学校名、学部学科、学年（チームでの応募の場合は、全メンバーについて記載してください。）
・代表者のメールアドレス
・作品の説明（作品のテーマ、概要）
・開発環境（使用したプログラミング言語、プラットフォーム、ライブラリ等）
・実行環境（作品を動作させる環境を構築する上で必要な情報を記載してください）

応募用紙で応募する場合

応募用紙は九州工業大学情報工学部福利助成団体翁subscribeにて配布します。応募用紙に必要な事項を記入の上、ソースコードと可能な場合は実行形式のファイルが保存された記憶メディアと一緒に、課外活動共用施設横横メンバーにて工大祭実行委員会に提出して下さい。

※スクリプト等のソースコードから直接実行可能な作品の場合は、実行形式のファイルを添付する必要はありません。
※応募数が8組を超える場合は、書類審査により8組に選抜させて頂きます。ご了承ください。

作品要件

作品は工大祭来場者に触れられるソフトウェアであることを要件とします。当日の展示においてコンテスト参加者が実行環境を用意できるならば、どのようなプラットフォーム上でプログラムを作成していただいても結構です。ただし、参加者に著作権のあるプログラムのみを応募作品として受理します。また、Arduino等マイコン上で動作する作品は不可とします。

審査方法

アピール
１．プレゼンテーション
コンテスト参加者のみなさんには、一組7分以内でプレゼンテーションを行ってもらいます。このプレゼンテーションの中で作品のアイデアの原稿をもとに、作品の完成度、技術レベルの高さをアピールしてください。プレゼンテーションの構成は各参加者にお任せします。プレゼンテーション終了後に3分間の質疑応答時間を設けます。

２．展示
すべての参加者のプレゼンテーションの終了後に40分間の作品展示時間を設けます。この時間に工大祭の来場者及び審査員に作品に直接触れさせて頂きます。コンテスト参加者は、指定された位置で作品の説明をし、アピールを行うことができます。
展示を行うためのプログラムの実行環境は原則として参加者自身に用意して頂きます。ただし、準備が難しい場合には企画運営側で対応できる範囲であれば対応いたします。その際はご相談ください。

審査
審査委員及び工大祭来場者に審査をしてももらいます。それぞれの審査で作品に点数を付与し、その合計によって順位を決定します。

１．審査員による審査
4名の審査員により審査を行います。審査員は「アイデア」「作品の完成度」「技術」「プレゼン力」の4つの項目で作品の評価を行います。項目ごとに5点満点で評価し、4名の審査員の評価の合計点が作品に付与されます。

２．工大祭来場者による審査
来場者に会場への入場時に予め投票用紙を配布しております。プレゼンテーション及び展示を見て頂き、最も気に入った作品に投票してもらいます。来場者による投票は1票1点として集計します。

表彰
審査の結果上位2組を表彰し賞品を贈呈します。賞品は以下のとおりです。
1位：MacBook Air 11インチ 64GBストレージ 2GBメモリ
2位：Amazonギフト10,000 円分
プログラミングコンテストの上位3組に学部長表彰及び副賞を贈呈した。

○ 最優秀賞 「TAチェック支援システム」
（概要）
「多人数講義における演習課題のTAチェック支援システム」をテーマに開発しました。
一般に大学の講義は受講者数が多く、生徒全員の理解度を高めるために先生の補助を行うティーチングアシスタント(TA)を採用することがあります。
代表的なTAの業務に出席の管理、課題のチェックがあります。
従来は紙媒体でそれらの管理を行っており、
* 人為的なミスが発生しやすい
* 複数TA間の同期が取れない
* 学生が自分の出席・課題提出状況を確認しづらい
といった問題がありました。
それらを解決すべくシステムを電子化し、データを一元管理し様々な端末から利用できるようなWebアプリケーション“TASKit”を開発しました。

○ 優秀賞 「スケジュール管理アプリケーション」
（概要）
Android端末(スマートフォン及びタブレット)上で動作する、以下の機能などを搭載した高度なスケジュール管理アプリケーション。
・スケジュール管理
・高度なアラーム機能
・他の端末間との情報共有(同期)機能

○ 優秀賞 「祭ちゃんポット」
（概要）
Twitter工大祭マスコットキャラクター

副賞 25周年記念クオ・カード（学部長より）
Bモバイル3G（連携教育推進室より）
資料７

指名補習は、特に学力に問題がある学生に対して、特別に時間を設定して個別指導を行う学習支援の形態である。数学、物理、情報、英語で実施した。

●数学コンシェルジュによる指名補習報告
1. 指名補習の概要
 ・2011年度後期再履修クラス「解析Ⅰ」において、指名された学生を対象とした補習を行う。
 ・1対1で補習することによって、学生の現時点での学力を調査し、学生が抱える問題点を具体的に把握する。
2. 補習の状況
 ・対象科目 2011年度後期日程「解析Ⅰ」
 ・補習を受けた人数 9人
 ・補習回数 各学生1回ずつ
3. 補習の成果
 ・学生たちが抱える問題点を具体的に知り、その部分を指導することができた。
4. 今後の課題
 ・指名された学生が来ない場合がある。

●情報コンシェルジュによる指名補習報告
1. コンシェルジュの概要
 ・補 講
 テスト不振学生を対象に、教科内容の重要ポイントをまとめた課題を提出し、その解答を添削しながら、学力向上を図った
2. コンシェルジュ実施状況
 補講（2010年度：162名／12回、2011年：なし）
3. コンシェルジュ活動の成果
 テスト不振学生に補講（2010年度前期：受講者27名、延べ受講者81名）
 補講結果、前期合格できた学生：（再テストを受験しなかった学生を除く全員）
学生 A の場合

＊ 高校における物理の履修はなく、1 学年のときの物理（物理入門）成績は不調で再履修を余儀なくされた。
＊ 2 学年目の 4 月より延べ 10 回において、力学の前年度の演習問題を材料に物理の考え方、数式の意味から理解できるように指導した。
＊ 再履修の結果、前期末テストは通過することができたが、指導以外の学科（物理系）の成績は依然として不調であった。

この学生に対しては、各主要学科の継続的補習が必要と思われる。

学生 B の場合

＊ 工業高校卒で数学、物理については初等範囲のみ学習で終わっていた。
＊ 1 年の 6 月より 11 回にわたり、基礎物理を教科書に沿って進行に指導した。

学習当初は演習問題もほとんど解けないレベルであったが、物理の考え方、数式の意味を理解することに重点を置いて指導することで授業に対する理解を深めることができた。
＊ 1 年前期末テストを通過し、その後の物理系学科の成績も良好で指導内容の波及効果もみられる。
＊ この学生については、早期に物理の基礎を理解させることにより、自主学習意欲を高めることができ関連学科の成績にもつながったと思われる。

![物理系成績のグラフ](image-url)
物理コンシェルジュによる指名補習報告

1. コンシェルジュの概要
毎週、テスト不振者や希望者を対象に補習を行い、当日または過去の演習問題、教科書から作成したミニテスト問題を通じて、対象範囲でキーとなる知識や、解答時の考え方や順序などを、講義した。

2. コンシェルジュ実施状況
補講（2010年度：162名／12回、2011年度：193名／23回）

3. コンシェルジュ活動の成果
補講（2010年度：延べ162名、2011年度：延べ193名）
中間テスト不振学生と希望者に対して補講を実施した
特記すべきは、中間テスト不振学生は、期末テストで好成績を出しその半数以上が合格できた
2010年 物理B：該当者14名中、11名が合格
2011年 物理A：対象10名中、5名が合格

コンシェルジュ活動の成果（補習）

・また、中間テスト不振受講学生はクラス平均以上に、期末テストで好成績を出した。期末テスト平均点が、中間テストとを比較して「不振受講者を除くクラス全体」は低下した中で、「不振受講者」は向上した。
コンシェルジュ活動の成果（補習）

2010年 不振受講者：18．4点 up 右記を除くクラス全体：6．8点 down
2011年 不振受講者：16．7点 up 右記を除くクラス全体：4．8点 down

・補講を通して、補講用テキストを整備できた（全62ページ）
補講テキスト例）
§2 小問題

1. 「①バネで繋がれ②質量mの質点2と質点3からなる静止中の質点系iに、質量mの質点1が速度vで図のように弾性衝突したとき、全体の運動エネルギーが、衝突の前後で変化しない衝突を保つ」という条件のもとで、以下の量を求める。

2) ①衝突前と②衝突後の「運動エネルギー」の関係式を求めよ。
ただし、衝突直後の質点1の速度をv1、質点2の速度v2とする。
「前のエネルギー」=「後のエネルギー」
⇒ \[\frac{1}{2} m_1 v_1^2 = \frac{1}{2} m_2 v_2^2 + \frac{1}{2} m_3 v_3^2 \]
⇒ \[m_2 v_2 = m_3 v_3 + m_1 v_1 \]

3) ①衝突前と②衝突後の「全体の運動量」の関係式を求めよ。
「前の運動量」=「後の運動量」
⇒ \[m_1 v_1 = m_2 v_2 + m_3 v_3 \]

4) 衝突直後の質点1の速度v1、質点2の速度v2を求めよ。

(1)より \[m_2 (v_2 - v_1) + m_3 v_3 = m_1 v_1 \]
(2)より \[m_2 v_2 = m_3 v_3 + m_1 v_1 \]

●指導カルテ

指導カルテシステムは、学習コンシェルジュや指名補習等で指導した学生の相談内容と、指導状況、問題解決の度合い等を記録するシステムである。医療で用いるカルテのように、学生の理解状態を指導者間で共有して指導に活かすとともに、指導の履歴を分析することで、学生の理解が不充分な授業内容の傾向を抽出したり、指導方法と学生の理解度の相関から有効な指導方法を知るなどの利用が可能である。
資料8

講話や講習会の開催

数学

教育談話会及び講話
教員および学生対象の学習力育成に関する講話を計2回開催した。

日時 2010年2月22日（月） 10:30～12:00
講師 筑波大学教授 宮本 定明 氏
演題 達成度評価による教育の質の保証
参加者 約10名

日時 2010年3月2日（火） 13:00～14:30
講師 九州大学名誉教授 佐藤 坦 氏
演題 なぜ数学か？
参加者 約10名

「解析Ⅰ」実力確認テスト会 計2回
学生が、現在の習熟度を確認し、自主的に学習を開始するよう促すことを目的に実施した。

日時 2011年7月4日間
参加者 4日間合計 約290名

日時 2012年6月～7月4日間
参加者 4日間合計 約100名

EMat（工学系数学統一試験）講習会 計2回
EMatを受験する学生を対象に講習会を実施した。

日時 2011年12月3日間
参加者 約5名

日時 2012年11月～12月4日間
参加者 約5名
物理
下記の Mathematica 講習会を行った。Mathematica は数式処理、グラフィック処理などがするシステムであり、数学、物理、医療などの広い分野で用いられている。この利用の仕方について、講習会をおこなった。これらは本学の e-learning 事業推進室に協力頂き、ビデオ撮影をおこない、moodle に動画教材としていた。当日使った教材も Moodle 上に置いているので、いつでもプリント教材を見ながら利用することが可能となっている。

日時　2011年6月28日（火） 16:20〜17:50
場所　マルチメディア講義室（講義棟 4F 1405）
講師　Wolfram Research Asia Ltd Technology Evangelist
　　理学博士　中村　英史　氏
参加者：19名（2名は教員）

日時　2011年12月14日（水） 14:40〜17:50
場所　マルチメディア講義室（講義棟 4F 1405）
講師　日本電子計算株式会社
　　WBG 認定 Mathematica インストラクター　伊藤　雅将　氏
参加者：12名（2名は教員）
・情報
・「情報処理技術者試験」対策セミナー
キャリアセンターと共催して、情報処理技術者試験のための対策セミナーを実施した。

日 時 2010年7月20日（火）
 18：00〜19：00
講 師 （独）情報処理推進機構
 グループリーダー 島田 高司 氏
演 題 情報処理技術者試験資格取得のための準備と対策
参加者 約100名

・「基本情報技術者試験」対策講座 計2回
日 時 2011年8月 計6日間 10：30 〜 16：00
講 師 機械情報工学科 準教授 田中和明先生
参加者 約50名

日 時 2012年9月 計6日間 10：30〜16：10
講 師 機械情報工学科 準教授 田中和明先生
参加者 約50名

・「情報処理技術者試験」講演会を2月の末に実施予定
英語

TOEIC 対策講座（計２回）
日時 2010年3月 3日間
講師 非常勤講師 英語コンシェルジェ 佐藤先生
日時 2011年9月 3日間
講師 非常勤講師 英語コンシェルジェ 佐藤先生
参加者 28名

Movie Nights
英語に親しんでもらうため、お勧め映画鑑賞会を実施した。
日時 2011年9月21日、22日
希望者 12名

英語講演会
英語教育の一環として、英語および日本語で講演会を実施した。
日時 2011年9月24日 16:00～
講演者 国際日本文化研究センター
准教授 ジョン ブリーン博士
参加者 約50名（一般公開したため、一般の方も含む）
資料9

外部評価委員は、H21年度に組織し、H21年度は1回、H22及びH23年度は年2回開催した。各委員会で取組状況の報告を行い、専門的な立場から評価を依頼した。委員会での評価を受け、改善点を洗い出し、可能な限り改善しながら取組を行った。

●外部評価委員（敬称略）
・東北公益文科大学 副学長 表 實
（所属大学をH23年3月に退職されたため、在任はH22年度まで）
・福岡教育大学 教授 永田 萬幸
・北九州市立大学 准教授 浅羽 修夫
・福岡県立嘉穂高等学校 校長 太田 淳一
・株式会社ハウインターナショナル 代表取締役 正田 英樹

●外部評価委員会議

第1回 日時：平成22年3月2日（火）10:00～12:00
場所：九州工業大学情報工学部 第2セミナー室
議題：（1）平成21年度の取組実施報告
（2）取組の評価・改善について
（3）平成22年度の取組活動に向けて
（4）英語補習講座
基礎講座・標準講座・実践講座の見学

第2回 日時：平成22年10月5日（火）15:00～17:00
場所：九州工業大学情報工学部 第2セミナー室
議題：（1）平成22年度前期の取組実施報告
（2）取組の評価・改善について
（3）平成22年度後期の取組活動に向けて
（4）学習コンシェルジェ見学

第3回 日時：平成23年2月28日（月）10:00～12:00
場所：九州工業大学情報工学部 第2セミナー室
議題：（1）平成22年度後期の取組実施報告
（2）取組の評価・改善について
（3）平成23年度の取組活動に向けて
（4）その他
第4回　日　時：平成23年10月6日（木） 10：00～12：00
場　所：九州工業大学情報工学部　第2セミナー室
議　題：(1) 平成23年度前期の取組実施報告
(2) 取組の評価・改善について
(3) 平成23年度後期取組の活動に向けて
(4) その他

第5回　日　時：平成24年2月9日（木） 10：00～12：00
場　所：九州工業大学情報工学部　第2セミナー室
議　題：(1) 平成21年度～平成23年度の取組実施報告
(2) 取組の評価・改善について
(3) 今後の取組活動に向けて
(4) その他
資料10

●平成22〜24年度の推薦入試合格者に対して、毎年下記のような研修会を実施した。H24年度の推薦入試合格者研修会を基に、平成22〜24年度の研修会の概要を報告する。

1. 事業の概要・必要性

【概要】 本取組は、「1時代と社会の要請に合致する優れた人材を養成するための教育改革」に該当し、次の（1）（2）を実施する。
（1） 推薦入試に合格した学生を対象に、大学入学時に身に付けておくべき基礎学力（数学、物理、英語、情報）を本学入学まで継続して学習するための研修会（以下、合格者研修会と記す）を実施する。
（2） 入学初年度の学生に対して数学、物理、英語、情報等に関するリメディアル教育を実施する。
（1）は、合格後1回の合格者研修会と家庭学習（参考書、印刷教材、eラーニング）を行う。3回の研修会のうち2回は、元高校のベテラン教員を講師に招いて2泊3日間の宿泊研修会を実施する。
宿泊研修会では、数学は主に数Ⅲ・C、物理は力学と電気気、英語はコミュニケーション能力やTOEICの得点向上、情報はプログラミングに対する興味付けを行う。また、合格者は、研修会と研修会の前にも、数学、物理、英語の参考書や印刷教材等を用いて家庭学習を行う。また、情報工学部で作成した高校情報科のeラーニング教材をWebサイトにアクセスして学ぶ。

合格者研修会では、教科の学習だけでなく、数学・物理・英語と大学の教育・研究との関わり、教員による模擬講義や学科紹介、自治会代表による大学生活の紹介や少人数ミーティング等を実施して、本学部に入学して学ぶための意識を高める。さらに、宿泊研修会では、参加者が互いにコミュニケーションを図りつつ共同生活を行う中で、連帯感を向上させ、仲間作りを促進して、大学生活へのスムーズな導入を図る。また（2）に示すように、合格者研修会の内容はビデオに収録してeラーニング化し、一般入試合格者を含めて平成23年度に入学する全学生が利用できるようにする。参考資料に示すように、この事業は、参加者から高い評価を得ているだけでなく、初年次教育を継続して実施することにより、学力の向上が認められる。したがって、平成22年度においても、継続して実施したい。

【目的・目標】
推薦入試合格者に対して(1)〜(3)、全入学者に対して(4)(5)の実現を目標にする。
(1) 本学で学ぶための基礎学力（数学、物理、英語）を入学前に身に付けさせる。
(2) 合格から大学入学まで継続して学習する機会を提供する。
(3) 本学へ入学する意識を高め、学習の目的と動機を得させる。
(4) 初年次リメディアル教育を行い、大学での初年次基礎教育につなげる。
(5) 物理、数学のリメディアル講義内容をeラーニング化して学習させる。

【必要性・緊急性】
小学校中学年から新教育課程で学習した学生が、平成23年春から大学に入学している。初等・中等教育の新教育課程では、学習内容が3割近く減少した上に必履修科目が減少したことにより、理数科目的選択者が減少し、高校卒業時の学力低下および未履修の問題が起きている。推薦入試合格者の中には、高校で物理Ⅰ・Ⅱを履修していない生徒が2割強、数学Ⅲ・Cを履修していない生徒が1割弱存在し、大学の授業の質を維持するためには入学前に補修する教育を行う必要がある。
また、推薦入試に合格した学生は、入学までに学習に対するモチベーションが低下してしまう傾向がある。したがって、入学までに合格者研修会を定期的に行い、数学・物理・英語等の基礎学力と勉学に対する意欲を高めるためのリメディアル教育は意義があり必要である。
この取組の研修会対象者は平成24年度に入学する学生であり、小学校から新教育課程で学んでき
た学生である。したがって、以前の入学者以上に、基礎学力が不足していると予想され、大学入学までに基礎学力を付ける研修会および初年次でのリメディアル教育は緊急を要する課題である。

【独創性・新規性等】
この事業は、平成17年度から継続的に実施しており、高い教育技術を有し、指導力が優れたベテランの元高校教員が、大学教員と連携して大学のリメディアル教育に積極的に関与するという、理数教育に関する新しい高度連携のモデルを全国に先駆けて提唱したものであり、他大学からの問い合わせも多い。また、情報工学部では、すべての高等学校に推薦入試結果に対する説明を個別に行っているが、その際の聞き取り調査において、高等学校側からも高い評価を得ている。

【第2期中期目標及び中期計画への貢献】
項目番号I-1-03の平成23年度計画（全学）「初年次における教育方策の改善を検討し、一部実施するとともに、能動的学習、チーム学習に関する教育方法及び教育環境を改善する。」の特に「初年次における教育方策の改善の検討」に貢献し、個別促進項目「の初年次教育」及び「eラーニングの活用」に貢献し、この項目内容の法人評価実績報告のエビデンスを提供できる。

2．事業の取組内容
[全体計画]
A．平成23年度前学期（平成23年度入学生対象）
数学、物理、英語のリメディアル教育を実施する。内容としては、これまでの合格者研修会等を元に制作したリメディアル教育用eラーニング教材を公開して学習させる。英語に関しては既存の市販eラーニングで学習させる。
B．平成23年度後学期（平成24年度入試合格者対象）
(B1) 推薦入試合格者を対象に研修会を3回に分けて実施する。
1 回目：平成23年12月下旬に実施する。合格者全員を大学に集合させて、数学、物理、英語のブレザメントテストを実施する。また、学習プリントや参考書を配布して、入学までの学習について説明する。また、基礎学力と大学の研究との関係について講演する。
2 回目：平成24年2月5日（火）～7日（火）に実施する。合格者を対象に2泊3日の宿泊型研修会を実施する。内容は、元高校ベテラン教員による、数学、物理、英語の基礎学力に講義である。第1回研修会以降の家庭学習の成果をこの第2回研修会で確認する。また、情報工学に関する大学の模擬授業や学部・学科紹介も行う。
3 回目：平成24年3月4日（日）～6日（火）に実施する。合格者を対象に2泊3日の宿泊型研修会を実施する。内容は、元高校ベテラン教員による、数学、物理、英語の基礎学力に講義である。第1回研修会以降の家庭学習の成果をこの第3回研修会で確認する。また、学生自治会やサークルによる推薦会や大学紹介を行いう大学生活に関する相談会も実施する。
(B2) (B1)で実施した推薦入試合格者研修会の講義の動画を編集してeラーニング教材化し、H24年度に大学入学の全学生が、入学後に数学、物理、英語のリメディアル学習ができるように準備する。

3．事業の実現に向けた実施体制等
【実施体制】
情報工学部連携教育推進室が実施主体である。連携教育推進室のメンバーは「プロジェクト組織代表および分担者」と示すように、情報工学部の全体指揮の下、連携教育推進室が数学、物理、英語、情報等のリメディアル教育の企画・運営担当者と共に研修プログラムを作成し実施する。企画・運営担当者は、元高校ベテラン教員を中心に数学2名、物理2名、英語2名を雇用する。講師は、家庭学習課題を含めた学習教材を作成し、合格者研修会の講義を担当する。
【工夫改善の状況】
本事業実施の企画、準備、当日の運営、各高校への実施説明に関しては、すべて情報工学部の教職
員が行う。また、研修会での大学紹介等に関するプログラムは、学生自治会等の学生組織やサークルと連携して実施する。講義のeラーニング化は、情報工学部情報基盤室と情報工学部eラーニング担当員が担当する。

４．事業達成による波及効果等（学問的効果、社会的効果、改善効果等）
本取組である大学新入生対象のリメディアル教育を達成することにより、大学入学時に必要な数学、物理、英語、情報の基礎学力を伸長することができる。入学前に基礎学力を付けることによって、大学の授業にスムーズに導入することができる。特に推薦入試合格者が抱える数学、物理の未履修者に対して学習の機会を保証する。
この合格者研修会の講師は、福岡県教育センターの元指導主事や、同教育センターが組織する研友会のメンバーおよび元高校ペテラン教員である。これらの元高校教員を介して、福岡県教育センターおよび県立高校との教育連携を深めることができる。また、合格者研修については入試要項に記載されており、受験者や高校に対して本学のリメディアル教育を紹介することによって、本学の教育に対する姿勢を高校や地域社会にアピールすることができる。
なお、情報工学部では、平成20年度推薦入試を受験したすべての高校を事後に訪問あるいは電話して、合格者を出した高校には合格者研修会の説明を行ったが、実施に否定的な高校はなく、参考資料に示すように、多くの高校がこの取り組みを高く評価していることがわかった。
このリメディアル教育は、単に基礎学力を増進するだけでなく、大学生活や大学での学習方法についての理解を深めるとともに、本学への入学に対する意識を高める。また、宿泊研修を経ることによって学科を越えた連帯感を醸成し、大学生活を送る精神的基盤を作る機会を学生に与える。
高校のペテラン教員の協力を得て合宿形式で実施するリメディアル教育は、他大学からの問題合せもあり、高大連携の新しい潮流として注目されることで社会的効果も大きいと考える。
大学基礎教育フォーラム

九州工業大学にて平成21年度より取り組んでいます大学教育・学生支援推進事業[テーマA]大学教育推進プログラム「自習自習育成による学習意欲と学力を向上」の中間報告会を、下記のように開催いたします。
本フォーラムでは、本学のこれまでの取組みを報告するとともに、大学基礎教育、初年次教育、高等学校でのeラーニング等についての先進的な取組みや今後の展望に関して講演会とパネルディスカッションを行います。

ご参加頂ければ幸いです。

九州工業大学大学院情報工学研究
初年次学習力育成WG代表 西野 和典

○日 時／2011年2月28日(月) 13:30 - 17:00
○場 所／九州工業大学 情報工学部 AV講演室
福岡県飯塚市川津680-4
http://www.lizuka.kyutech.ac.jp/
○主 催／九州工業大学
○企 画／初年次学習力育成WG
○参 加 費／無料 ＊どなたでも参加できます。

＊本学が取り組み中のGPの内容につきましては下記のWebページをご覧下さい。
http://www.ngp.kyutech.ac.jp/

問い合わせ先
九州工業大学情報工学部
連携教育推進室 園入 久仁子
tel 0948-29-7529
e-mail:ennyu-k@jimu.kyutech.ac.jp
PROGRAM
講演会（13:30-17:00）

13:00 受付

13:30 挨拶 九州工業大学 学長 松永 守央

13:40 講演会
大学の基礎教育—自然科学の位置付けについて—
東北公益文科大学 表 眞

大学における教育学習活動の見える化
名古屋大学 梶田 将司

14:40-15:10
本GP組の中間報告
九州工業大学 西野 和典

15:10-15:30 休憩

15:30 パネルディスカッション
テーマ:「自学自習力と基礎学力の向上」
パネリスト 福井大学 本田 知己
長岡技術科学大学 若林 敦
九州工業大学 稲原 武

17:00 閉会
学校名: 九州工業大学

電子オルゴール作成会
フィジカル・コンピューティング
上級生が指導

スモールステップ型物質eラーニング教材
スモールステップ型学習【自学自習が可能な程度に学習ステップを設定】⇒制御に応じた学習が可能
学習支援システム
電子教材
学習単元: 60 確認テスト: 53 動画: 465ステップ

eラーニングの活用とループリンク
◆ eラーニング教育推進室と連携
◆ Moodleを利用して
(1) 基礎教育用教材(物理他)　
(2) 共学教育用教材(英語他)
(3) 体験等の学習支援
→設備投資サミット、数学統一テスト等
(4) 情報処理教育教材
→ループリンクの作成(例: 初等物理の一部)
学習者がレベルを確認できるように、eラーニングに組み込む

ループリンク
→相対評価を行う際に用いる

学習コンシェルジュ
1. 回答やセミナー設置
	デアーショングを設置
→数・物・情報の単位講師が
実質に担当、学習指導も対応
→質問に掲示欄
→対象科目的

指導件数(のべ人数)
数学 物理 情報 英語
147 65 16 236

ただし、数・物・情報は4月〜12/20
英語は4月〜7月の合計

指名補習と授業内指導
2. 指名補習
→成績改善対象に対する指名補習
授業内指導
→授業に入り授業内あるいは基

ボトムアップとトップアップ
ボトムアップ企画
1. 学習コンシェルジュ
2. 基礎教育授業(数学・英語)
3. 基礎教育対策(物理・情報)

物質の基本試験成績分布
成績分布の表
授業内指導(早朝/午前)
取組の評価体制と課題

- 学外評価委員会による検討（年2回）や、実施状況に基づく評価
- 学生へのアンケート（一部取組）を基に、取組を改善する

課題

- 本取組への学生の主体的参加をどう引き出すか
- 取組を継続させるための工夫をどうするか

まとめ

- 学力に対応した学習指導
 - 総合学習授業
 - 学習コンシェルジュでの個別指導
 - ラーニングを活用
 - チャレンジ学習やワークショップの実施

ポットアップ → トップアップ

基礎学力と自学自習力を身に付け
専門教育へと導くことが目標
持続可能な実施体制の実現を目指す
九州工業大学教育フォーラム　文部科学省GPフォーラム
大学教育におけるパラダイムシフトと新機軸

日　時　2012年3月7日(水) 10:00～17:30 ※9:15開場　18:00～20:00 情報交換会
会　場　アクロス福岡 7階 大会議室 地図
〒810-0001 福岡市中央区天神1丁目1番1号
http://www.acros.or.jp/
主　催　九州工業大学
共　催　学習教育センター、ポートフォリオシステム作業部会、初年次GPワーキンググループ、学修ポートフォリオ研究会
後　援　西日本新聞社、九州経済連合会
申込方法　FAX専用の申込用紙に必要事項をご記入の上 FAX番号948-29-7751までご送信ください。
また http://www.ltc.kyutech.ac.jp/からオンラインでもお申し込みいただけます。

プログラム
閉会挨拶 10:00-10:10
　副学長 尾家 祐二
特別講演 10:10-10:40
　文部科学省 高等教育局専門教育課　視学官 鎌鳥 隆
（第1部）学習を基軸にする新しい大学教育の展開
　学部教育における教育改革の取組 10:40-11:00
　副学長 尾家 祐二
実績報告 11:00-12:00
　「PBLを基軸とする工学教育プログラム」
　工学研究院　教授 中尾 基
　「インタラクティブ学習環境MLAISでのTBL教育」
　情報工学研究院　教授 横原 弘之
　「学修自己評価システムの開発経緯と全校展開」
　副学長　細江 和義　情報工学研究院　准教授 林 昇宏　工学部教務係　主任 西野 元子
＊＊ お昼休息（60分）＊＊＊＊＊＊＊＊＊＊＊＊＊＊

（第2部）初年次教育と教育方法の改善
大学教育推進プログラム【テーマA】 自主学習力育成による学習意欲と学力の向上 最終報告 13:00-13:30
　情報工学研究院　教授 西野 和典
パネルディスカッション テーマ：初年次教育と教育方法の改善 13:30-15:00
（パネリスト）
　筑波大学　学長補佐　教育企画室長　石田 東生
　帝塚山大学　副学長　岩井 洋
　京都文教大学　教授 中村 博幸
＊＊ 休憩（10分）＊＊＊＊＊＊＊＊＊＊＊＊＊＊

（第3部）eポートフォリオとその活用
基調講演 15:10-15:40
　「eポートフォリオの新展開」
　東京学芸大学　准教授　森本 康彦
eポートフォリオの活用　パネル報告とパネルディスカッション 15:40-17:30
（パネル報告とパネリスト）
　「学修自己評価システムによる学修意欲改革の取り組み」
　情報工学研究院　准教授　坂本 寛
　「学習の自己評価等を基とした学習・教育改善支援システムの構築」
　大阪府立大学　教授　星野 聡孝
　「e能力ポートフォリオの活用」
　帝塚山大学　副学長　岩井 洋
　「キャリア・ディベロップメント証明書発行システムと履修カルテシスムによる学生の自主的なキャリア形成支援」
　宮崎大学　教授　松下 洋一
フォーラム総括と閉会挨拶
　副学長 尾家 祐二
情報交換会 18:00-20:00 （西鉄イン福岡　参加費 4,000円）
教育を行う側の教育体制や教育力とその質、教育を受ける側にある学生の学修意識と学力は、大学における教育研究を支える重要な柱です。とりわけ後者は、卒業者に求められる能力として提唱されている、社会人基礎力や学力に関連する能力といえ、こういった能力の育成が学部教育に近年強く求められるようになってきました。この背景には、知識価値の半分の評価基準による教育から、より現実的な学びに対応できる能力の育成に、教育の重きを置くといった考え方のシフトがあります。このような中、工夫を凝らした特徴的な大学教育が、国内の大学等々で新たに展開されております。

本学においても、「学習成果自己評価シートによる学生自身の達成度評価」や「自己学習力育成による学修意欲と学力の向上」のような、さまざまな教育に関する取り組みをこれまで進めてまいりました。本学における教育に関する取り組みを、ご報告させていただくと同時に、特徴的な大学教育を実践されている先生方をお招きし、その取組をご紹介いただくことで、大学教育におけるパラダイムシフトと新課題について、広く議論し情報発信する場をご提供いたします。本教育フォーラムを開催いたします。

九州工業大学 理系・副学長（教育・情報担当）
学習教育センター長 尾家 弘二

○申込方法
FAX専用の申込用紙に必要事項をご記入の上、FAX番号0948-29-7751までご送信ください。
または http://www.ite.kyutech.ac.jp からオンラインでもお申し込みいただけます。

○申込締切
事前の申込締切日：2012年3月2日(金)
当日会場での参加申込も受け付けます。

○情報交換会 18:00〜20:00
会場：掲載タイトル: 九州工業大学 7階 大会議室
〒810-0001 福岡市中央区天神1-11-1
TEL:0948-29-7751
http://www.n-ittei.or.jp/ からオンラインでもお申し込みいただけます。

問い合わせ先
九州工業大学 学習教育センター
教育フォーラム 事務局（担当：今井）
TEL:0948-29-7751（受付時間9:30〜16:30土日祝休）
FAX:0948-29-7751
E-mail: office@jimu.kyutech.ac.jp
おわりに

大学入学時の学力低下は、高等教育が抱える共通の課題である。本取組では、大学初年次において、多様な学力レベルの学生に対応する方法で基礎科目教育（数学・物理・英語・情報）を充実させる取組を実施した。また、基礎学力とともに、自ら学び自ら考える学習自習に注目し、学習意欲を向上させ學習習慣を身につけさせる取り組みにも挑戦した。

具体的には、学習コンシェルジェステーション（ヘルプデスク）を設けて学習アドバイザを置き、学生が個別に質問や学習相談ができる教育環境を整えた。また、以前から実施している英語に続いて初年次の数学「解析」において、学生個々の学力を伸長させるための習熟度別授業を開始した。さらに、学力に応じた学習が可能なスムーズステップ方式の自学自習教材の開発も行った。このような種々の取組を通じて、基礎教育終了時の学力の到達目標を定め、全員が基準以上の学力を修得するようにして専門教育の質を低下させないような基礎教育をめざした。

2010年度は、数学・物理・英語・情報のヘルプデスクを常設して、学生からの任意の質問に答えるとともに、授業担当者と連携して長期にわたる学生の個別指導も実施した。また、英語に加えて数学（解析）の前期授業において習熟度別講義を実施した。

基礎物理分野においては、基礎学力を学生が評価するためのループリック（絶対的な評価指標を用いた能力評価）を開発し、2010年度に開発したeラーニング教材を併せて学生が自学自習できるようにした。ループリックは、基礎数学科目でも開発した。さらに、取組期間中に、数学・物理・英語・情報の分野で数多くのワークショップや講習会を実施した。

このような取組の中で、基礎学力を育成するための教育システムが整ってきたことは事実である。本報告書に示したように、学生は本取組の中で実際に基礎学力を付けていった。たとえば、本取組で設置した学習コンシェルジェを利用して、大きく学力を向上させた学生もいる。一方で、学ぶ意欲を喚起するための仕組みを構築する一朝一夕では難しく、これからも引き続き課題として取り組む必要がある。

この取組には、数学、物理、情報、英語等の基礎科目を担当する教員をはじめ、事務担当、教材作成者、学外専門講師にも数多く参画していた。また、T.Aをはじめ数多くの学生が本取組の趣旨を理解して参画した。また、外部評価委員からの適切なアドバイスは言うまでもなく、本学のすべての教職員にご協力いただいた。この場をお借りして、本取組を支えていただいた諸氏に感謝し、深く御礼申し上げます。

九州工業大学大学院情報工学研究院 教授
本事業推進責任者 西野 和典
【初年次学習力育成ワーキンググループ関係者一覧】

○初年次学習力育成ワーキンググループ及び協力者
・尾家 祐二（平成21年度　大学院情報工学研究院長）
・仁川 純一（平成22年度・平成23年度　大学院情報工学研究院長）
・大西 慎雅
・岡崎 悦明
・小田部 茂司
・國近 秀信
・篠原 武
・田中 和明
・豊島 孝之
・中村 貞吾
・永山 勝也
・西野 和典（事業推進責任者）
・本田 あおい
・山口 真之介

○学習コンシェルジュ（専任講師）
・数学担当　　豊坂 祐樹
・物理担当　　永尾 信明　　鳥越 敏裕
・情報・物理担当　由井 武俊
・英語担当　　宇野 温清　　ケネディ ブライアン
　　　佐藤 直子　　チャールズ アシュリー
　　　藤井 健吾　　藤下 友子　　ホロウェイ グレゴリー

○学外協力者
・上野 昭治　　・山本 努　　・松井 廣伸

○外部評価委員
・浅羽 修夫（北九州市立大学　准教授）
・太田 淳一（福岡県立嘉穂高等学校　校長）
・正田 英樹（株式会社ハウインターナショナル　代表取締役）
・永田 萃幸（福岡教育大学　教授）
・表 實 （元 東北公益文科大学　副学長）

○事務スタッフ
・園入 久仁子　・原谷 裕子　・八島 千鶴子
（敬称略・五十音順）